Uploaded model
- Developed by: snufkin68
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Instruction tuning
The models have been fine-tuned on the following datasets.
Language | Dataset | description |
---|---|---|
Japanese | ichikara-instruction-003-001-1.json | A manually constructed instruction dataset |
Japanese | ichikara-instruction-003-001-2.1.json | A manually constructed instruction dataset |
Japanese | ichikara-instruction-003-001-2.2.json | A manually constructed instruction dataset |
Japanese | ichikara-instruction-003-001-5.1.json | A manually constructed instruction dataset |
Japanese | ichikara-instruction-003-001-5.2.json | A manually constructed instruction dataset |
Japanese | ichikara-instruction-003-003-1.json | A manually constructed instruction dataset |
データセット作成チーム: 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)
Usage
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
import torch
from tqdm import tqdm
import json
HF_TOKEN = "YOUR-HF-TOKEN"
model_name = "snufkin68/llm-jp-3-13b-it5"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
token = HF_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN)
datasets = []
with open("./YOUR-DATA.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答:
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.2
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
import re
model_name = re.sub(".*/", "", model_name)
with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for snufkin68/llm-jp-3-13b-it5
Base model
llm-jp/llm-jp-3-13b