Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces # Uncomment if using ZeroGPU | |
from diffusers import DiffusionPipeline | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "stabilityai/stable-diffusion-2-1-base" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
backgrounds_list = ["forest", "city street", "beach", "office", "bus", "laboratory", "factory", "construction site", "hospital", "night club", ""] | |
poses_list = ["portrait", "side-portrait"] | |
id_list = ["ID_0", "ID_1", "ID_2", "ID_3", "ID_4", "ID_5"] | |
gender_dict = {"ID_0": "male"} | |
MAX_SEED = 10000 | |
image_size = 512 | |
# Uncomment if using ZeroGPU | |
def infer( | |
background, | |
pose, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
guidance_scale, | |
num_inference_steps, | |
progress=gr.Progress(track_tqdm=True), | |
num_images=1 | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
id = "ID_0" | |
gender = gender_dict[id] | |
# Construct prompt from dropdown selections | |
prompt = f"face {pose.lower()} photo of {gender} {id} person, {background.lower()} background" | |
print(prompt) | |
print(negative_prompt) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=image_size, | |
height=image_size, | |
generator=generator, | |
num_images_per_prompt=num_images, | |
).images[0] | |
return image, seed | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # ID-Booth Demo") | |
with gr.Row(): | |
which_id = gr.Dropdown( | |
label="Identity", | |
choices=id_list, | |
value=id_list[0], | |
) | |
background = gr.Dropdown( | |
label="Background", | |
choices=backgrounds_list, | |
value=backgrounds_list[0], | |
) | |
pose = gr.Dropdown( | |
label="Pose", | |
choices=poses_list, | |
value=poses_list[0], | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion(open=False, label="Advanced Options"): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
value="cartoon, cgi, render, illustration, painting, drawing, black and white, bad body proportions, landscape", | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of sample steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=3.0, | |
) | |
num_images = gr.Slider( | |
label="Number of output images", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=2, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
gr.Examples( | |
examples=[ | |
[id_list[0], backgrounds_list[0], poses_list[0], "A beautiful photo of a person", 0, False, 512, 512, 7.5, 50], | |
], | |
inputs=[which_id, background, pose], | |
) | |
gr.on( | |
triggers=[run_button.click], | |
fn=infer, | |
inputs=[ | |
background, | |
pose, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
guidance_scale, | |
num_inference_steps, | |
num_images | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |