ID-Booth / app.py
DarianT's picture
Update advanced settings
9b37578
raw
history blame
4.4 kB
import gradio as gr
import numpy as np
import random
import spaces # Uncomment if using ZeroGPU
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-2-1-base"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
backgrounds_list = ["forest", "city street", "beach", "office", "bus", "laboratory", "factory", "construction site", "hospital", "night club", ""]
poses_list = ["portrait", "side-portrait"]
id_list = ["ID_0", "ID_1", "ID_2", "ID_3", "ID_4", "ID_5"]
gender_dict = {"ID_0": "male"}
MAX_SEED = 10000
image_size = 512
@spaces.GPU # Uncomment if using ZeroGPU
def infer(
background,
pose,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
num_images=1
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
id = "ID_0"
gender = gender_dict[id]
# Construct prompt from dropdown selections
prompt = f"face {pose.lower()} photo of {gender} {id} person, {background.lower()} background"
print(prompt)
print(negative_prompt)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=image_size,
height=image_size,
generator=generator,
num_images_per_prompt=num_images,
).images[0]
return image, seed
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # ID-Booth Demo")
with gr.Row():
which_id = gr.Dropdown(
label="Identity",
choices=id_list,
value=id_list[0],
)
background = gr.Dropdown(
label="Background",
choices=backgrounds_list,
value=backgrounds_list[0],
)
pose = gr.Dropdown(
label="Pose",
choices=poses_list,
value=poses_list[0],
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion(open=False, label="Advanced Options"):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="cartoon, cgi, render, illustration, painting, drawing, black and white, bad body proportions, landscape",
)
num_inference_steps = gr.Slider(
label="Number of sample steps",
minimum=1,
maximum=100,
step=1,
value=25,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=3.0,
)
num_images = gr.Slider(
label="Number of output images",
minimum=1,
maximum=4,
step=1,
value=2,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.Examples(
examples=[
[id_list[0], backgrounds_list[0], poses_list[0], "A beautiful photo of a person", 0, False, 512, 512, 7.5, 50],
],
inputs=[which_id, background, pose],
)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
background,
pose,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_images
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()