Spaces:
Running
on
Zero
Running
on
Zero
Update optimized.py
Browse files- optimized.py +38 -17
optimized.py
CHANGED
@@ -11,26 +11,38 @@ from accelerate import dispatch_model, infer_auto_device_map
|
|
11 |
def self_attention_slicing(module, slice_size=3):
|
12 |
"""Modified from Diffusers' original for Flux compatibility"""
|
13 |
def sliced_attention(*args, **kwargs):
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
26 |
good_vae = AutoencoderKL.from_pretrained(
|
27 |
"black-forest-labs/FLUX.1-dev",
|
28 |
subfolder="vae",
|
29 |
torch_dtype=torch.bfloat16,
|
30 |
use_safetensors=True,
|
31 |
-
|
|
|
32 |
)
|
33 |
-
|
34 |
# 2. Main Pipeline Initialization WITH VAE SCOPE
|
35 |
pipe = FluxControlNetPipeline.from_pretrained(
|
36 |
"LPX55/FLUX.1-merged_uncensored",
|
@@ -47,15 +59,24 @@ pipe = FluxControlNetPipeline.from_pretrained(
|
|
47 |
|
48 |
# 3. Strict Order for Optimization Steps
|
49 |
# A. Apply CPU Offloading FIRST
|
50 |
-
pipe.enable_sequential_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
|
|
52 |
# B. Enable Memory Optimizations
|
53 |
-
pipe.enable_vae_tiling()
|
54 |
-
pipe.enable_xformers_memory_efficient_attention()
|
55 |
|
56 |
# C. Unified Precision Handling
|
57 |
-
for comp in [pipe.unet, pipe.vae, pipe.controlnet]:
|
58 |
-
|
59 |
|
60 |
print(f"VRAM used: {torch.cuda.memory_allocated()/1e9:.2f}GB")
|
61 |
@spaces.GPU
|
|
|
11 |
def self_attention_slicing(module, slice_size=3):
|
12 |
"""Modified from Diffusers' original for Flux compatibility"""
|
13 |
def sliced_attention(*args, **kwargs):
|
14 |
+
if "dim" in kwargs:
|
15 |
+
dim = kwargs["dim"]
|
16 |
+
else:
|
17 |
+
dim = 1
|
18 |
|
19 |
+
if slice_size == "auto":
|
20 |
+
# Automatic slicing based on Flux architecture
|
21 |
+
return module(*args, **kwargs)
|
22 |
+
|
23 |
+
output = torch.cat([
|
24 |
+
module(
|
25 |
+
*[arg[:, :, i:i+slice_size] if i == dim else arg
|
26 |
+
for arg in args],
|
27 |
+
**{k: v[:, :, i:i+slice_size] if k == dim else v
|
28 |
+
for k,v in kwargs.items()}
|
29 |
+
)
|
30 |
+
for i in range(0, args[0].shape[dim], slice_size)
|
31 |
+
], dim=dim)
|
32 |
+
|
33 |
+
return output
|
34 |
+
return sliced_attention
|
35 |
|
36 |
+
|
37 |
+
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
38 |
good_vae = AutoencoderKL.from_pretrained(
|
39 |
"black-forest-labs/FLUX.1-dev",
|
40 |
subfolder="vae",
|
41 |
torch_dtype=torch.bfloat16,
|
42 |
use_safetensors=True,
|
43 |
+
device_map=None, # Disable automatic mapping
|
44 |
+
token=huggingface_token
|
45 |
)
|
|
|
46 |
# 2. Main Pipeline Initialization WITH VAE SCOPE
|
47 |
pipe = FluxControlNetPipeline.from_pretrained(
|
48 |
"LPX55/FLUX.1-merged_uncensored",
|
|
|
59 |
|
60 |
# 3. Strict Order for Optimization Steps
|
61 |
# A. Apply CPU Offloading FIRST
|
62 |
+
pipe.enable_sequential_cpu_offload() # No arguments for new API
|
63 |
+
# 2. Then apply custom VAE slicing
|
64 |
+
if getattr(pipe, "vae", None) is not None:
|
65 |
+
# Method 1: Use official implementation if available
|
66 |
+
try:
|
67 |
+
pipe.vae.enable_slicing()
|
68 |
+
except AttributeError:
|
69 |
+
# Method 2: Apply manual slicing for Flux compatibility [source_id]pipeline_flux_controlnet.py
|
70 |
+
pipe.vae.decode = self_attention_slicing(pipe.vae.decode, 2)
|
71 |
|
72 |
+
pipe.enable_attention_slicing(1)
|
73 |
# B. Enable Memory Optimizations
|
74 |
+
# pipe.enable_vae_tiling()
|
75 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
76 |
|
77 |
# C. Unified Precision Handling
|
78 |
+
# for comp in [pipe.unet, pipe.vae, pipe.controlnet]:
|
79 |
+
# comp.to(dtype=torch.bfloat16)
|
80 |
|
81 |
print(f"VRAM used: {torch.cuda.memory_allocated()/1e9:.2f}GB")
|
82 |
@spaces.GPU
|