Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import spaces | |
import numpy as np | |
import random | |
import os | |
import yaml | |
from pathlib import Path | |
import imageio | |
import tempfile | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import shutil | |
from inference import ( | |
create_ltx_video_pipeline, | |
create_latent_upsampler, | |
load_image_to_tensor_with_resize_and_crop, | |
seed_everething, | |
get_device, | |
calculate_padding, | |
load_media_file | |
) | |
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline | |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml" | |
with open(config_file_path, "r") as file: | |
PIPELINE_CONFIG_YAML = yaml.safe_load(file) | |
LTX_REPO = "Lightricks/LTX-Video" | |
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280) | |
MAX_NUM_FRAMES = 257 | |
FPS = 30.0 | |
# --- Global variables for loaded models --- | |
pipeline_instance = None | |
latent_upsampler_instance = None | |
models_dir = "downloaded_models_gradio_cpu_init" | |
Path(models_dir).mkdir(parents=True, exist_ok=True) | |
print("Downloading models (if not present)...") | |
distilled_model_actual_path = hf_hub_download( | |
repo_id=LTX_REPO, | |
filename=PIPELINE_CONFIG_YAML["checkpoint_path"], | |
local_dir=models_dir, | |
local_dir_use_symlinks=False | |
) | |
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path | |
print(f"Distilled model path: {distilled_model_actual_path}") | |
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] | |
spatial_upscaler_actual_path = hf_hub_download( | |
repo_id=LTX_REPO, | |
filename=SPATIAL_UPSCALER_FILENAME, | |
local_dir=models_dir, | |
local_dir_use_symlinks=False | |
) | |
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path | |
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}") | |
print("Creating LTX Video pipeline on CPU...") | |
pipeline_instance = create_ltx_video_pipeline( | |
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"], | |
precision=PIPELINE_CONFIG_YAML["precision"], | |
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], | |
sampler=PIPELINE_CONFIG_YAML["sampler"], | |
device="cpu", | |
enhance_prompt=False, | |
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"], | |
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"], | |
) | |
print("LTX Video pipeline created on CPU.") | |
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"): | |
print("Creating latent upsampler on CPU...") | |
latent_upsampler_instance = create_latent_upsampler( | |
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"], | |
device="cpu" | |
) | |
print("Latent upsampler created on CPU.") | |
target_inference_device = "cuda" | |
print(f"Target inference device: {target_inference_device}") | |
pipeline_instance.to(target_inference_device) | |
if latent_upsampler_instance: | |
latent_upsampler_instance.to(target_inference_device) | |
# --- Helper function for dimension calculation --- | |
MIN_DIM_SLIDER = 256 # As defined in the sliders minimum attribute | |
TARGET_FIXED_SIDE = 768 # Desired fixed side length as per requirement | |
def calculate_new_dimensions(orig_w, orig_h): | |
""" | |
Calculates new dimensions for height and width sliders based on original media dimensions. | |
Ensures one side is TARGET_FIXED_SIDE, the other is scaled proportionally, | |
both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]. | |
""" | |
if orig_w == 0 or orig_h == 0: | |
# Default to TARGET_FIXED_SIDE square if original dimensions are invalid | |
return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE) | |
if orig_w >= orig_h: # Landscape or square | |
new_h = TARGET_FIXED_SIDE | |
aspect_ratio = orig_w / orig_h | |
new_w_ideal = new_h * aspect_ratio | |
# Round to nearest multiple of 32 | |
new_w = round(new_w_ideal / 32) * 32 | |
# Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE] | |
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE)) | |
# Ensure new_h is also clamped (TARGET_FIXED_SIDE should be within these bounds if configured correctly) | |
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE)) | |
else: # Portrait | |
new_w = TARGET_FIXED_SIDE | |
aspect_ratio = orig_h / orig_w # Use H/W ratio for portrait scaling | |
new_h_ideal = new_w * aspect_ratio | |
# Round to nearest multiple of 32 | |
new_h = round(new_h_ideal / 32) * 32 | |
# Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE] | |
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE)) | |
# Ensure new_w is also clamped | |
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE)) | |
return int(new_h), int(new_w) | |
def get_duration(prompt, negative_prompt, input_image_filepath, input_video_filepath, | |
height_ui, width_ui, mode, | |
duration_ui, # Removed ui_steps | |
ui_frames_to_use, | |
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag, | |
progress): | |
if duration_ui > 7: | |
return 75 | |
else: | |
return 60 | |
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath, | |
height_ui, width_ui, mode, | |
duration_ui, | |
ui_frames_to_use, | |
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag, | |
progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed_ui = random.randint(0, 2**32 - 1) | |
seed_everething(int(seed_ui)) | |
target_frames_ideal = duration_ui * FPS | |
target_frames_rounded = round(target_frames_ideal) | |
if target_frames_rounded < 1: | |
target_frames_rounded = 1 | |
n_val = round((float(target_frames_rounded) - 1.0) / 8.0) | |
actual_num_frames = int(n_val * 8 + 1) | |
actual_num_frames = max(9, actual_num_frames) | |
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames) | |
actual_height = int(height_ui) | |
actual_width = int(width_ui) | |
height_padded = ((actual_height - 1) // 32 + 1) * 32 | |
width_padded = ((actual_width - 1) // 32 + 1) * 32 | |
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1 | |
if num_frames_padded != actual_num_frames: | |
print(f"Warning: actual_num_frames ({actual_num_frames}) and num_frames_padded ({num_frames_padded}) differ. Using num_frames_padded for pipeline.") | |
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded) | |
call_kwargs = { | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"height": height_padded, | |
"width": width_padded, | |
"num_frames": num_frames_padded, | |
"frame_rate": int(FPS), | |
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)), | |
"output_type": "pt", | |
"conditioning_items": None, | |
"media_items": None, | |
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], | |
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"], | |
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], | |
"image_cond_noise_scale": 0.15, | |
"is_video": True, | |
"vae_per_channel_normalize": True, | |
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"), | |
"offload_to_cpu": False, | |
"enhance_prompt": False, | |
} | |
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values") | |
if stg_mode_str.lower() in ["stg_av", "attention_values"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues | |
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip | |
elif stg_mode_str.lower() in ["stg_r", "residual"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual | |
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock | |
else: | |
raise ValueError(f"Invalid stg_mode: {stg_mode_str}") | |
if mode == "image-to-video" and input_image_filepath: | |
try: | |
media_tensor = load_image_to_tensor_with_resize_and_crop( | |
input_image_filepath, actual_height, actual_width | |
) | |
media_tensor = torch.nn.functional.pad(media_tensor, padding_values) | |
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)] | |
except Exception as e: | |
print(f"Error loading image {input_image_filepath}: {e}") | |
raise gr.Error(f"Could not load image: {e}") | |
elif mode == "video-to-video" and input_video_filepath: | |
try: | |
call_kwargs["media_items"] = load_media_file( | |
media_path=input_video_filepath, | |
height=actual_height, | |
width=actual_width, | |
max_frames=int(ui_frames_to_use), | |
padding=padding_values | |
).to(target_inference_device) | |
except Exception as e: | |
print(f"Error loading video {input_video_filepath}: {e}") | |
raise gr.Error(f"Could not load video: {e}") | |
print(f"Moving models to {target_inference_device} for inference (if not already there)...") | |
active_latent_upsampler = None | |
if improve_texture_flag and latent_upsampler_instance: | |
active_latent_upsampler = latent_upsampler_instance | |
result_images_tensor = None | |
if improve_texture_flag: | |
if not active_latent_upsampler: | |
raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.") | |
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler) | |
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy() | |
first_pass_args["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML | |
# num_inference_steps will be derived from len(timesteps) in the pipeline | |
first_pass_args.pop("num_inference_steps", None) | |
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy() | |
second_pass_args["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML | |
# num_inference_steps will be derived from len(timesteps) in the pipeline | |
second_pass_args.pop("num_inference_steps", None) | |
multi_scale_call_kwargs = call_kwargs.copy() | |
multi_scale_call_kwargs.update({ | |
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"], | |
"first_pass": first_pass_args, | |
"second_pass": second_pass_args, | |
}) | |
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}") | |
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images | |
else: | |
single_pass_call_kwargs = call_kwargs.copy() | |
first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {}) | |
single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps") | |
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML | |
single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale") | |
single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale") | |
single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list") | |
# Remove keys that might conflict or are not used in single pass / handled by above | |
single_pass_call_kwargs.pop("num_inference_steps", None) | |
single_pass_call_kwargs.pop("first_pass", None) | |
single_pass_call_kwargs.pop("second_pass", None) | |
single_pass_call_kwargs.pop("downscale_factor", None) | |
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}") | |
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images | |
if result_images_tensor is None: | |
raise gr.Error("Generation failed.") | |
pad_left, pad_right, pad_top, pad_bottom = padding_values | |
slice_h_end = -pad_bottom if pad_bottom > 0 else None | |
slice_w_end = -pad_right if pad_right > 0 else None | |
result_images_tensor = result_images_tensor[ | |
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end | |
] | |
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() | |
video_np = np.clip(video_np, 0, 1) | |
video_np = (video_np * 255).astype(np.uint8) | |
temp_dir = tempfile.mkdtemp() | |
timestamp = random.randint(10000,99999) | |
output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4") | |
try: | |
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer: | |
for frame_idx in range(video_np.shape[0]): | |
progress(frame_idx / video_np.shape[0], desc="Saving video") | |
video_writer.append_data(video_np[frame_idx]) | |
except Exception as e: | |
print(f"Error saving video with macro_block_size=1: {e}") | |
try: | |
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer: | |
for frame_idx in range(video_np.shape[0]): | |
progress(frame_idx / video_np.shape[0], desc="Saving video (fallback ffmpeg)") | |
video_writer.append_data(video_np[frame_idx]) | |
except Exception as e2: | |
print(f"Fallback video saving error: {e2}") | |
raise gr.Error(f"Failed to save video: {e2}") | |
return output_video_path, seed_ui | |
def update_task_image(): | |
return "image-to-video" | |
def update_task_text(): | |
return "text-to-video" | |
def update_task_video(): | |
return "video-to-video" | |
# --- Gradio UI Definition --- | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 900px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# LTX Video 0.9.7 Distilled") | |
gr.Markdown("Fast high quality video generation. [Model](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-distilled.safetensors) [GitHub](https://github.com/Lightricks/LTX-Video) [Diffusers](#)") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("image-to-video") as image_tab: | |
video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None) | |
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"]) | |
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3) | |
i2v_button = gr.Button("Generate Image-to-Video", variant="primary") | |
with gr.Tab("text-to-video") as text_tab: | |
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None) | |
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None) | |
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3) | |
t2v_button = gr.Button("Generate Text-to-Video", variant="primary") | |
with gr.Tab("video-to-video", visible=False) as video_tab: | |
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None) | |
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]) # type defaults to filepath | |
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.") | |
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3) | |
v2v_button = gr.Button("Generate Video-to-Video", variant="primary") | |
duration_input = gr.Slider( | |
label="Video Duration (seconds)", | |
minimum=0.3, | |
maximum=8.5, | |
value=2, | |
step=0.1, | |
info=f"Target video duration (0.3s to 8.5s)" | |
) | |
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.") | |
with gr.Column(): | |
output_video = gr.Video(label="Generated Video", interactive=False) | |
# gr.DeepLinkButton() | |
with gr.Accordion("Advanced settings", open=False): | |
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False) | |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2) | |
with gr.Row(): | |
seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1) | |
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True) | |
with gr.Row(): | |
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.") | |
with gr.Row(): | |
height_input = gr.Slider(label="Height", value=512, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.") | |
width_input = gr.Slider(label="Width", value=704, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.") | |
# --- Event handlers for updating dimensions on upload --- | |
def handle_image_upload_for_dims(image_filepath, current_h, current_w): | |
if not image_filepath: # Image cleared or no image initially | |
# Keep current slider values if image is cleared or no input | |
return gr.update(value=current_h), gr.update(value=current_w) | |
try: | |
img = Image.open(image_filepath) | |
orig_w, orig_h = img.size | |
new_h, new_w = calculate_new_dimensions(orig_w, orig_h) | |
return gr.update(value=new_h), gr.update(value=new_w) | |
except Exception as e: | |
print(f"Error processing image for dimension update: {e}") | |
# Keep current slider values on error | |
return gr.update(value=current_h), gr.update(value=current_w) | |
def handle_video_upload_for_dims(video_filepath, current_h, current_w): | |
if not video_filepath: # Video cleared or no video initially | |
return gr.update(value=current_h), gr.update(value=current_w) | |
try: | |
# Ensure video_filepath is a string for os.path.exists and imageio | |
video_filepath_str = str(video_filepath) | |
if not os.path.exists(video_filepath_str): | |
print(f"Video file path does not exist for dimension update: {video_filepath_str}") | |
return gr.update(value=current_h), gr.update(value=current_w) | |
orig_w, orig_h = -1, -1 | |
with imageio.get_reader(video_filepath_str) as reader: | |
meta = reader.get_meta_data() | |
if 'size' in meta: | |
orig_w, orig_h = meta['size'] | |
else: | |
# Fallback: read first frame if 'size' not in metadata | |
try: | |
first_frame = reader.get_data(0) | |
# Shape is (h, w, c) for frames | |
orig_h, orig_w = first_frame.shape[0], first_frame.shape[1] | |
except Exception as e_frame: | |
print(f"Could not get video size from metadata or first frame: {e_frame}") | |
return gr.update(value=current_h), gr.update(value=current_w) | |
if orig_w == -1 or orig_h == -1: # If dimensions couldn't be determined | |
print(f"Could not determine dimensions for video: {video_filepath_str}") | |
return gr.update(value=current_h), gr.update(value=current_w) | |
new_h, new_w = calculate_new_dimensions(orig_w, orig_h) | |
return gr.update(value=new_h), gr.update(value=new_w) | |
except Exception as e: | |
# Log type of video_filepath for debugging if it's not a path-like string | |
print(f"Error processing video for dimension update: {e} (Path: {video_filepath}, Type: {type(video_filepath)})") | |
return gr.update(value=current_h), gr.update(value=current_w) | |
image_i2v.upload( | |
fn=handle_image_upload_for_dims, | |
inputs=[image_i2v, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
video_v2v.upload( | |
fn=handle_video_upload_for_dims, | |
inputs=[video_v2v, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
image_tab.select( | |
fn=update_task_image, | |
outputs=[mode] | |
) | |
text_tab.select( | |
fn=update_task_text, | |
outputs=[mode] | |
) | |
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden, | |
height_input, width_input, mode, | |
duration_input, frames_to_use, | |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture] | |
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden, | |
height_input, width_input, mode, | |
duration_input, frames_to_use, | |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture] | |
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v, | |
height_input, width_input, mode, | |
duration_input, frames_to_use, | |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture] | |
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video, seed_input], api_name="text_to_video") | |
i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video, seed_input], api_name="image_to_video") | |
v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video, seed_input], api_name="video_to_video") | |
if __name__ == "__main__": | |
if os.path.exists(models_dir) and os.path.isdir(models_dir): | |
print(f"Model directory: {Path(models_dir).resolve()}") | |
demo.queue().launch(debug=True, share=False, mcp_server=True) |