|
from fastapi import FastAPI, Request |
|
from fastapi.responses import HTMLResponse, PlainTextResponse |
|
from fastapi.staticfiles import StaticFiles |
|
from fastapi.templating import Jinja2Templates |
|
import uvicorn |
|
from transformers import pipeline |
|
|
|
|
|
app = FastAPI() |
|
app.mount("/static", StaticFiles(directory="static"), name="static") |
|
templates = Jinja2Templates(directory="") |
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
async def read_item(request: Request): |
|
return templates.TemplateResponse("index.html", context={'request': request}) |
|
|
|
@app.get("/{content}", response_class=PlainTextResponse) |
|
async def read_item(request: Request, content: str): |
|
return analyze_output(content) |
|
|
|
@app.post("/{content}", response_class=PlainTextResponse) |
|
async def read_item(request: Request, content: str): |
|
return analyze_output(content) |
|
|
|
def analyze_output(input: str, pipe = pipeline("text-classification", model="Titeiiko/OTIS-Official-Spam-Model")): |
|
x = pipe(input)[0] |
|
if x["label"] == "LABEL_0": |
|
return str({"type":"Not Spam", "probability":x["score"]}) |
|
else: |
|
return str({"type":"Spam", "probability":x["score"]}) |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |