Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,198 Bytes
bce439c 9632d12 0e14842 bce439c 0e14842 bce439c fda85af 0e14842 da1235d 3407b2a 5132eef 3407b2a da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef 3407b2a da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef 3407b2a da1235d 5132eef da1235d 5132eef da1235d 5132eef da1235d 5132eef 772fb9a da1235d 9632d12 76a0dbd 975601a 5132eef 975601a 5132eef 975601a 5132eef 975601a 5132eef 975601a 5132eef 76a0dbd 975601a 76a0dbd 5132eef 76a0dbd 975601a 76a0dbd 0e14842 76a0dbd 0e14842 9632d12 5132eef 9632d12 5132eef 9632d12 5132eef 9632d12 5132eef 9632d12 bce439c bb4e06a bce439c 5132eef 0e14842 fda85af 5132eef 76a0dbd 5132eef 76a0dbd 5132eef 76a0dbd 5132eef 76a0dbd bce439c 5132eef 0e14842 9632d12 0e14842 bce439c 471d662 bf65a8f 471d662 0e14842 471d662 da1235d 471d662 af92840 471d662 76a0dbd 5132eef da1235d 471d662 af92840 471d662 5132eef 89db92b 76a0dbd 471d662 af92840 5132eef 76a0dbd 471d662 53c6344 471d662 bb4e06a 5132eef 9632d12 bb4e06a 76a0dbd 471d662 5132eef 76a0dbd 5132eef 9632d12 76a0dbd 471d662 76a0dbd 471d662 5132eef 76a0dbd 471d662 76a0dbd 471d662 da1235d 5132eef 76a0dbd 5132eef 76a0dbd 471d662 bb4e06a bce439c fda85af bce439c 76a0dbd 471d662 da1235d 5132eef 0e14842 471d662 5132eef 471d662 da1235d 471d662 0e14842 5132eef 975601a 471d662 76a0dbd 975601a 5132eef da1235d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
import re
import tempfile
import io
import logging
# -----------------------------
# Google Gemini API ๊ด๋ จ
# -----------------------------
import google.generativeai as genai
import google.generativeai.types as genai_types
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
###############################################################################
# 1. ํ
์คํธ(ํ๊ธ โ ์์ด) ๋ณํ ๋ณด์กฐ ํจ์
###############################################################################
def maybe_translate_to_english(text: str) -> str:
"""
ํ
์คํธ์ ํ๊ตญ์ด๊ฐ ์์ผ๋ฉด ๊ฐ๋จํ ์นํ ๊ท์น์ ๋ฐ๋ผ ์์ด๋ก ๋ณํ.
"""
translations = {
"์๋
ํ์ธ์": "Hello",
"ํ์ํฉ๋๋ค": "Welcome",
"์๋
": "Hello",
"๋ฐฐ๋": "Banner",
# ํ์์ ๋ฐ๋ผ ์ถ๊ฐ
}
for kr, en in translations.items():
if kr in text:
text = text.replace(kr, en)
return text
###############################################################################
# 2. Gemini API ํธ์ถ์ ์ํ ์ค๋น
###############################################################################
def save_binary_file(file_name, data):
""" ์ด์ง ํ์ผ์ ์ ์ฅํ๋ ํฌํผ ํจ์ """
with open(file_name, "wb") as f:
f.write(data)
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
"""
Google Gemini API๋ฅผ ํธ์ถํด ํ
์คํธ ๊ธฐ๋ฐ ์ด๋ฏธ์ง ํธ์ง/์์ฑ์ ์ํ.
file_name: ์๋ณธ ์ด๋ฏธ์ง๋ฅผ ์์ ์
๋ก๋ํ์ฌ API๋ก ์ ๋ฌ
text: ์ ์ฉํ ํ
์คํธ ์ง์์ฌํญ
"""
api_key = os.getenv("GAPI_TOKEN")
if not api_key:
raise ValueError("GAPI_TOKEN is missing. Please set an API key.")
# Gemini API ์ธ์ฆ ์ค์
genai.configure(api_key=api_key)
# ์ด๋ฏธ์ง ํ์ผ ์
๋ก๋
uploaded_file = genai.upload_file(path=file_name)
# API์ ์ ๋ฌํ content ๊ตฌ์ฑ
contents = [
genai_types.Content(
role="user",
parts=[
# ๋จผ์ ์
๋ก๋๋ ํ์ผ URI๋ฅผ ํฌํจ
genai_types.Part.from_uri(
file_uri=uploaded_file.uri,
mime_type=uploaded_file.mime_type,
),
# ์ด์ด์ text ์ง์์ฌํญ์ ํฌํจ
genai_types.Part.from_text(text=text),
],
),
]
# ์์ฑ(ํธ์ง) ์ค์
generation_config = genai_types.GenerationConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192, # ์ถ๋ ฅ ํ ํฐ ์ ํ
response_mime_type="text/plain",
)
text_response = "" # API๊ฐ ๋ฐํํ ํ
์คํธ ๋์
image_path = None # API๊ฐ ๋ฐํํ ์ด๋ฏธ์ง ํ์ผ์ ๋ก์ปฌ ๊ฒฝ๋ก
# ์์ ํ์ผ์ ํธ์ง๋ ์ด๋ฏธ์ง ์ ์ฅ
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
temp_path = tmp.name
# ์คํธ๋ฆฌ๋ฐ ํํ๋ก ์๋ต์ ๋ฐ์
response = genai.generate_content(
model=model,
contents=contents,
generation_config=generation_config,
stream=True
)
# ์คํธ๋ฆฌ๋ฐ๋ chunk๋ค์์ ์ด๋ฏธ์ง์ ํ
์คํธ๋ฅผ ์ถ์ถ
for chunk in response:
for candidate in chunk.candidates:
for part in candidate.content.parts:
# ์ด๋ฏธ์ง์ธ ๊ฒฝ์ฐ
if hasattr(part, 'inline_data') and part.inline_data:
save_binary_file(temp_path, part.inline_data.data)
image_path = temp_path
break
# ํ
์คํธ์ธ ๊ฒฝ์ฐ
elif hasattr(part, 'text'):
text_response += part.text + "\n"
if image_path:
break
if image_path:
break
# ์
๋ก๋๋ ์์ ํ์ผ ์ญ์
genai.delete_file(uploaded_file.name)
return image_path, text_response
###############################################################################
# 3. ์ด๋ฏธ์ง์ ํ
์คํธ๋ฅผ ์ฝ์
/์์ ํ๋ ํจ์ (Gemini API 2ํ ํธ์ถ)
###############################################################################
def change_text_in_image_two_times(original_image, instruction):
"""
Gemini API๋ฅผ ๋ ๋ฒ ํธ์ถํ์ฌ ๋ ๊ฐ์ ๋ฒ์ ์ ์์ฑํ๋ค.
"""
import numpy as np
# ๋ง์ฝ ์ด๋ฏธ์ง๊ฐ numpy.ndarray ํ์
์ด๋ฉด PIL๋ก ๋ณํ
if isinstance(original_image, np.ndarray):
original_image = Image.fromarray(original_image)
results = []
for version_tag in ["(A)", "(B)"]:
mod_instruction = f"{instruction} {version_tag}"
try:
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
original_path = tmp.name
if isinstance(original_image, Image.Image):
original_image.save(original_path, format="PNG")
logging.debug(f"[DEBUG] Saved image to temporary file: {original_path}")
else:
raise gr.Error(f"์์๋ PIL Image๊ฐ ์๋ {type(original_image)} ํ์
์ด ์ ๊ณต๋์์ต๋๋ค.")
# Gemini API ํธ์ถ
image_path, text_response = generate_by_google_genai(
text=mod_instruction,
file_name=original_path
)
if image_path:
# ๋ฐํ๋ ์ด๋ฏธ์ง ๋ก๋
try:
with open(image_path, "rb") as f:
image_data = f.read()
new_img = Image.open(io.BytesIO(image_data))
results.append(new_img)
except Exception as img_err:
logging.error(f"[ERROR] Failed to process Gemini image: {img_err}")
results.append(original_image)
else:
logging.warning(f"[WARNING] ์ด๋ฏธ์ง๊ฐ ๋ฐํ๋์ง ์์์ต๋๋ค. ํ
์คํธ ์๋ต: {text_response}")
results.append(original_image)
except Exception as e:
logging.exception(f"Text modification error: {e}")
results.append(original_image)
return results
###############################################################################
# 4. ํ
์คํธ ๋ ๋๋ง(๋ฌธ์ ์ฝ์
)์ฉ ํจ์
###############################################################################
def gemini_text_rendering(image, rendering_text):
"""
์ฃผ์ด์ง image์ ๋ํด Gemini API๋ก text_rendering์ ์ ์ฉ
"""
rendering_text_en = maybe_translate_to_english(rendering_text)
instruction = (
f"Render the following text on the image in a clear, visually appealing manner: "
f"{rendering_text_en}."
)
# ์ด๋ฏธ์ง์ ํ
์คํธ ์ฝ์
(A/B ๋ฒ์ 2ํ ์์ฑ) โ ์ฌ๊ธฐ์๋ 2ํ ์ค ์ฒซ ๋ฒ์งธ๋ง ๋ฐํ
rendered_images = change_text_in_image_two_times(image, instruction)
if rendered_images and len(rendered_images) > 0:
return rendered_images[0]
return image
def apply_text_rendering(image, rendering_text):
"""
rendering_text๊ฐ ์กด์ฌํ๋ฉด Gemini API๋ก ํ
์คํธ ์ฝ์
์ ์ ์ฉ.
์์ผ๋ฉด ์๋ณธ ์ด๋ฏธ์ง๋ฅผ ๊ทธ๋๋ก ๋ฐํ.
"""
if rendering_text and rendering_text.strip():
return gemini_text_rendering(image, rendering_text)
return image
###############################################################################
# 5. Diffusion Pipeline ๋ก๋ ๋ฐ ๊ธฐ๋ณธ ์ธํ
###############################################################################
SAVE_DIR = "saved_images"
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/flux-chatgpt-ghibli-lora"
def load_model_with_retry(max_retries=5):
"""
๋ก์ปฌ ๋๋ Hugging Face๋ก๋ถํฐ ๋ชจ๋ธ(FLUX.1-dev) + LoRA ์ด๋ํฐ(weights)๋ฅผ ๋ถ๋ฌ์จ๋ค.
"""
for attempt in range(max_retries):
try:
logging.info(f"Loading model attempt {attempt+1}/{max_retries}...")
pipeline = DiffusionPipeline.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16,
use_safetensors=True,
resume_download=True
)
logging.info("Model loaded successfully, loading LoRA weights...")
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
logging.info("Pipeline ready!")
return pipeline
except Exception as e:
if attempt < max_retries - 1:
wait_time = 10 * (attempt + 1)
logging.error(f"Error loading model: {e}. Retrying in {wait_time} seconds...")
import time
time.sleep(wait_time)
else:
raise Exception(f"Failed to load model after {max_retries} attempts: {e}")
pipeline = load_model_with_retry()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
"""
์์ฑ๋ ์ด๋ฏธ์ง๋ฅผ ์ ์ฅํ๋ฉด์ ๋ฉํ ์ ๋ณด๋ฅผ ๊ธฐ๋กํ๋ค.
"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
image.save(filepath)
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
def load_generated_images():
"""
์ ์ฅ๋ ์ด๋ฏธ์ง๋ฅผ ์ต์ ์์ผ๋ก ๋ถ๋ฌ์จ๋ค.
"""
if not os.path.exists(SAVE_DIR):
return []
image_files = [
os.path.join(SAVE_DIR, f)
for f in os.listdir(SAVE_DIR)
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))
]
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
return image_files
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
"""
Diffusion Pipeline์ ์ฌ์ฉํด ์ด๋ฏธ์ง๋ฅผ ์์ฑ. (LoRA ์ค์ผ์ผ, Steps ๋ฑ ์ค์ ๊ฐ๋ฅ)
"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
filepath = save_generated_image(image, prompt)
return image, seed, load_generated_images()
except Exception as e:
logging.error(f"Error during inference: {e}")
error_img = Image.new('RGB', (width, height), color='red')
return error_img, seed, load_generated_images()
###############################################################################
# 6. Gradio UI
###############################################################################
examples = [
"Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves. The armor reflects the pink and purple hues of the alien sunset, creating an ethereal glow around the figure. [trigger]",
"Ghibli style young mechanic girl in a floating workshop, surrounded by hovering tools and glowing mechanical parts, her blue overalls covered in oil stains, tinkering with a semi-transparent robot companion. Magical sparks fly as she works, while floating islands with waterfalls drift past her open workshop window. [trigger]",
"Ghibli style ancient forest guardian robot, covered in moss and flowering vines, sitting peacefully in a crystal-clear lake. Its gentle eyes glow with soft blue light, while bioluminescent dragonflies dance around its weathered metal frame. Ancient tech symbols on its surface pulse with a gentle rhythm. [trigger]",
"Ghibli style sky whale transport ship, its metallic skin adorned with traditional Japanese patterns, gliding through cotton candy clouds at sunrise. Small floating gardens hang from its sides, where workers in futuristic kimonos tend to glowing plants. Rainbow auroras shimmer in the background. [trigger]",
"Ghibli style cyber-shrine maiden with flowing holographic robes, performing a ritual dance among floating lanterns and digital cherry blossoms. Her traditional headdress emits soft light patterns, while spirit-like AI constructs swirl around her in elegant patterns. The scene is set in a modern shrine with both ancient wood and sleek chrome elements. [trigger]",
"Ghibli style robot farmer tending to floating rice paddies in the sky, wearing a traditional straw hat with advanced sensors. Its gentle movements create ripples in the water as it plants glowing rice seedlings. Flying fish leap between the terraced fields, leaving trails of sparkles in their wake, while future Tokyo's spires gleam in the distance. [trigger]"
]
css = """
:root {
--primary-color: #6a92cc;
--primary-hover: #557ab8;
--secondary-color: #f4c062;
--background-color: #f7f9fc;
--panel-background: #ffffff;
--text-color: #333333;
--border-radius: 12px;
--shadow: 0 4px 12px rgba(0,0,0,0.08);
--font-main: 'Poppins', -apple-system, BlinkMacSystemFont, sans-serif;
}
body {
background-color: var(--background-color);
font-family: var(--font-main);
}
.gradio-container {
margin: 0 auto;
max-width: 1200px !important;
}
.main-header {
text-align: center;
padding: 2rem 1rem 1rem;
background: linear-gradient(90deg, #6a92cc 0%, #8f7fc8 100%);
color: white;
margin-bottom: 2rem;
border-radius: var(--border-radius);
box-shadow: var(--shadow);
}
.main-header h1 {
font-size: 2.5rem;
margin-bottom: 0.5rem;
font-weight: 700;
text-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.main-header p {
font-size: 1rem;
margin-bottom: 0.5rem;
opacity: 0.9;
}
.main-header a {
color: var(--secondary-color);
text-decoration: none;
font-weight: 600;
transition: all 0.2s ease;
}
.main-header a:hover {
text-decoration: underline;
opacity: 0.9;
}
.container {
background-color: var(--panel-background);
padding: 1.5rem;
border-radius: var(--border-radius);
box-shadow: var(--shadow);
margin-bottom: 1.5rem;
}
button.primary {
background: var(--primary-color) !important;
border: none !important;
color: white !important;
padding: 10px 20px !important;
border-radius: 8px !important;
font-weight: 600 !important;
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
transition: all 0.2s ease !important;
}
button.primary:hover {
background: var(--primary-hover) !important;
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.15) !important;
}
button.secondary {
background: white !important;
border: 1px solid #ddd !important;
color: var(--text-color) !important;
padding: 10px 20px !important;
border-radius: 8px !important;
font-weight: 500 !important;
box-shadow: 0 2px 5px rgba(0,0,0,0.05) !important;
transition: all 0.2s ease !important;
}
button.secondary:hover {
background: #f5f5f5 !important;
transform: translateY(-2px) !important;
}
.gr-box {
border-radius: var(--border-radius) !important;
border: 1px solid #e0e0e0 !important;
}
.gr-panel {
border-radius: var(--border-radius) !important;
}
.gr-input {
border-radius: 8px !important;
border: 1px solid #ddd !important;
padding: 12px !important;
}
.gr-form {
border-radius: var(--border-radius) !important;
background-color: var(--panel-background) !important;
}
.gr-accordion {
border-radius: var(--border-radius) !important;
overflow: hidden !important;
}
.gr-button {
border-radius: 8px !important;
}
.gallery-item {
border-radius: var(--border-radius) !important;
transition: all 0.3s ease !important;
}
.gallery-item:hover {
transform: scale(1.02) !important;
box-shadow: 0 6px 15px rgba(0,0,0,0.1) !important;
}
.tabs {
border-radius: var(--border-radius) !important;
overflow: hidden !important;
}
footer {
display: none !important;
}
.settings-accordion legend span {
font-weight: 600 !important;
}
.example-prompt {
font-size: 0.9rem;
color: #555;
padding: 8px;
background: #f5f7fa;
border-radius: 6px;
border-left: 3px solid var(--primary-color);
margin-bottom: 8px;
cursor: pointer;
transition: all 0.2s;
}
.example-prompt:hover {
background: #eef2f8;
}
.status-generating {
color: #ffa200;
font-weight: 500;
display: flex;
align-items: center;
gap: 8px;
}
.status-generating::before {
content: "";
display: inline-block;
width: 12px;
height: 12px;
border-radius: 50%;
background-color: #ffa200;
animation: pulse 1.5s infinite;
}
.status-complete {
color: #00c853;
font-weight: 500;
display: flex;
align-items: center;
gap: 8px;
}
.status-complete::before {
content: "";
display: inline-block;
width: 12px;
height: 12px;
border-radius: 50%;
background-color: #00c853;
}
@keyframes pulse {
0% { opacity: 0.6; }
50% { opacity: 1; }
100% { opacity: 0.6; }
}
.gr-accordion-title {
font-weight: 600 !important;
color: var(--text-color) !important;
}
.tabs button {
font-weight: 500 !important;
padding: 10px 16px !important;
}
.tabs button.selected {
font-weight: 600 !important;
color: var(--primary-color) !important;
background: rgba(106, 146, 204, 0.1) !important;
}
.gr-slider-container {
padding: 10px 0 !important;
}
.gr-prose h3 {
font-weight: 600 !important;
color: var(--primary-color) !important;
margin-bottom: 1rem !important;
}
"""
with gr.Blocks(css=css, analytics_enabled=False, theme="soft") as demo:
with gr.Column():
gr.HTML('''
<div class="main-header">
<h1>โจ FLUX Ghibli LoRA Generator โจ</h1>
<p>Community: <a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a></p>
</div>
''')
with gr.Row():
with gr.Column(scale=3):
with gr.Group(elem_classes="container"):
prompt = gr.Textbox(
label="Enter your imagination",
placeholder="Describe your Ghibli-style image here...",
lines=3
)
# Text Rendering ์
๋ ฅ๋
text_rendering = gr.Textbox(
label="Text Rendering (Multilingual: English, Korean...)",
placeholder="Man saying '์๋
' in 'speech bubble'",
lines=1
)
with gr.Row():
run_button = gr.Button("โจ Generate Image", elem_classes="primary")
clear_button = gr.Button("Clear", elem_classes="secondary")
with gr.Accordion("Advanced Settings", open=False, elem_classes="settings-accordion"):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
with gr.Group(elem_classes="container"):
gr.Markdown("### โจ Example Prompts")
examples_html = '\n'.join([f'<div class="example-prompt">{ex}</div>' for ex in examples])
example_container = gr.HTML(examples_html)
with gr.Column(scale=4):
with gr.Group(elem_classes="container"):
generation_status = gr.HTML('<div class="status-complete">Ready to generate</div>')
result = gr.Image(label="Generated Image", elem_id="result-image")
seed_text = gr.Number(label="Used Seed", value=42)
with gr.Tabs(elem_classes="tabs") as tabs:
with gr.TabItem("Gallery"):
with gr.Group(elem_classes="container"):
gallery_header = gr.Markdown("### ๐ผ๏ธ Your Generated Masterpieces")
with gr.Row():
refresh_btn = gr.Button("๐ Refresh Gallery", elem_classes="secondary")
generated_gallery = gr.Gallery(
label="Generated Images",
columns=3,
value=load_generated_images(),
height="500px",
elem_classes="gallery-item"
)
###########################################################################
# Gradio Helper Functions
###########################################################################
def refresh_gallery():
return load_generated_images()
def clear_output():
return "", gr.update(value=None), seed, '<div class="status-complete">Ready to generate</div>'
def before_generate():
return '<div class="status-generating">Generating image...</div>'
def after_generate(image, seed_num, gallery):
return image, seed_num, gallery, '<div class="status-complete">Generation complete!</div>'
###########################################################################
# Gradio Event Wiring
###########################################################################
refresh_btn.click(
fn=refresh_gallery,
inputs=None,
outputs=generated_gallery,
)
clear_button.click(
fn=clear_output,
inputs=None,
outputs=[prompt, result, seed_text, generation_status]
)
# 1) ์ํ ํ์
# 2) ์ด๋ฏธ์ง ์์ฑ
# 3) ์ํ ์
๋ฐ์ดํธ
# 4) ํ
์คํธ ๋ ๋๋ง(์๋ค๋ฉด)
run_button.click(
fn=before_generate,
inputs=None,
outputs=generation_status,
).then(
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed_text, generated_gallery],
).then(
fn=after_generate,
inputs=[result, seed_text, generated_gallery],
outputs=[result, seed_text, generated_gallery, generation_status],
).then(
fn=apply_text_rendering,
inputs=[result, text_rendering],
outputs=result
)
# prompt submit ์์๋ ๋์ผํ ์ฒด์ธ ์คํ
prompt.submit(
fn=before_generate,
inputs=None,
outputs=generation_status,
).then(
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed_text, generated_gallery],
).then(
fn=after_generate,
inputs=[result, seed_text, generated_gallery],
outputs=[result, seed_text, generated_gallery, generation_status],
).then(
fn=apply_text_rendering,
inputs=[result, text_rendering],
outputs=result
)
# JS๋ก ์์ prompt ํด๋ฆญ ์ ์๋ ์ฑ์ฐ๊ธฐ
gr.HTML("""
<script>
document.addEventListener('DOMContentLoaded', function() {
setTimeout(() => {
const examples = document.querySelectorAll('.example-prompt');
const promptInput = document.querySelector('textarea');
examples.forEach(example => {
example.addEventListener('click', function() {
promptInput.value = this.textContent.trim();
const event = new Event('input', { bubbles: true });
promptInput.dispatchEvent(event);
});
});
}, 1000);
});
</script>
""")
###############################################################################
# 7. ์คํ
###############################################################################
try:
demo.queue(concurrency_count=1, max_size=20)
demo.launch(debug=True, show_api=False)
except Exception as e:
logging.error(f"Error during launch: {e}")
logging.info("Trying alternative launch configuration...")
demo.launch(debug=True, show_api=False, share=False)
|