Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import os | |
import uuid | |
from datetime import datetime | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from PIL import Image | |
import re | |
import tempfile | |
import io | |
import logging | |
# ----------------------------- | |
# Google Gemini API κ΄λ ¨ | |
# ----------------------------- | |
import google.generativeai as genai | |
import google.generativeai.types as genai_types | |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') | |
############################################################################### | |
# 1. ν μ€νΈ(νκΈ β μμ΄) λ³ν 보쑰 ν¨μ | |
############################################################################### | |
def maybe_translate_to_english(text: str) -> str: | |
""" | |
ν μ€νΈμ νκ΅μ΄κ° μμΌλ©΄ κ°λ¨ν μΉν κ·μΉμ λ°λΌ μμ΄λ‘ λ³ν. | |
""" | |
translations = { | |
"μλ νμΈμ": "Hello", | |
"νμν©λλ€": "Welcome", | |
"μλ ": "Hello", | |
"λ°°λ": "Banner", | |
# νμμ λ°λΌ μΆκ° | |
} | |
for kr, en in translations.items(): | |
if kr in text: | |
text = text.replace(kr, en) | |
return text | |
############################################################################### | |
# 2. Gemini API νΈμΆμ μν μ€λΉ | |
############################################################################### | |
def save_binary_file(file_name, data): | |
""" μ΄μ§ νμΌμ μ μ₯νλ ν¬νΌ ν¨μ """ | |
with open(file_name, "wb") as f: | |
f.write(data) | |
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"): | |
""" | |
Google Gemini APIλ₯Ό νΈμΆν΄ ν μ€νΈ κΈ°λ° μ΄λ―Έμ§ νΈμ§/μμ±μ μν. | |
file_name: μλ³Έ μ΄λ―Έμ§λ₯Ό μμ μ λ‘λνμ¬ APIλ‘ μ λ¬ | |
text: μ μ©ν ν μ€νΈ μ§μμ¬ν | |
""" | |
api_key = os.getenv("GAPI_TOKEN") | |
if not api_key: | |
raise ValueError("GAPI_TOKEN is missing. Please set an API key.") | |
# Gemini API μΈμ¦ μ€μ | |
genai.configure(api_key=api_key) | |
# μ΄λ―Έμ§ νμΌ μ λ‘λ | |
uploaded_file = genai.upload_file(path=file_name) | |
# APIμ μ λ¬ν content κ΅¬μ± | |
contents = [ | |
genai_types.Content( | |
role="user", | |
parts=[ | |
# λ¨Όμ μ λ‘λλ νμΌ URIλ₯Ό ν¬ν¨ | |
genai_types.Part.from_uri( | |
file_uri=uploaded_file.uri, | |
mime_type=uploaded_file.mime_type, | |
), | |
# μ΄μ΄μ text μ§μμ¬νμ ν¬ν¨ | |
genai_types.Part.from_text(text=text), | |
], | |
), | |
] | |
# μμ±(νΈμ§) μ€μ | |
generation_config = genai_types.GenerationConfig( | |
temperature=1, | |
top_p=0.95, | |
top_k=40, | |
max_output_tokens=8192, # μΆλ ₯ ν ν° μ ν | |
response_mime_type="text/plain", | |
) | |
text_response = "" # APIκ° λ°νν ν μ€νΈ λμ | |
image_path = None # APIκ° λ°νν μ΄λ―Έμ§ νμΌμ λ‘컬 κ²½λ‘ | |
# μμ νμΌμ νΈμ§λ μ΄λ―Έμ§ μ μ₯ | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: | |
temp_path = tmp.name | |
# μ€νΈλ¦¬λ° ννλ‘ μλ΅μ λ°μ | |
response = genai.generate_content( | |
model=model, | |
contents=contents, | |
generation_config=generation_config, | |
stream=True | |
) | |
# μ€νΈλ¦¬λ°λ chunkλ€μμ μ΄λ―Έμ§μ ν μ€νΈλ₯Ό μΆμΆ | |
for chunk in response: | |
for candidate in chunk.candidates: | |
for part in candidate.content.parts: | |
# μ΄λ―Έμ§μΈ κ²½μ° | |
if hasattr(part, 'inline_data') and part.inline_data: | |
save_binary_file(temp_path, part.inline_data.data) | |
image_path = temp_path | |
break | |
# ν μ€νΈμΈ κ²½μ° | |
elif hasattr(part, 'text'): | |
text_response += part.text + "\n" | |
if image_path: | |
break | |
if image_path: | |
break | |
# μ λ‘λλ μμ νμΌ μμ | |
genai.delete_file(uploaded_file.name) | |
return image_path, text_response | |
############################################################################### | |
# 3. μ΄λ―Έμ§μ ν μ€νΈλ₯Ό μ½μ /μμ νλ ν¨μ (Gemini API 2ν νΈμΆ) | |
############################################################################### | |
def change_text_in_image_two_times(original_image, instruction): | |
""" | |
Gemini APIλ₯Ό λ λ² νΈμΆνμ¬ λ κ°μ λ²μ μ μμ±νλ€. | |
""" | |
import numpy as np | |
# λ§μ½ μ΄λ―Έμ§κ° numpy.ndarray νμ μ΄λ©΄ PILλ‘ λ³ν | |
if isinstance(original_image, np.ndarray): | |
original_image = Image.fromarray(original_image) | |
results = [] | |
for version_tag in ["(A)", "(B)"]: | |
mod_instruction = f"{instruction} {version_tag}" | |
try: | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: | |
original_path = tmp.name | |
if isinstance(original_image, Image.Image): | |
original_image.save(original_path, format="PNG") | |
logging.debug(f"[DEBUG] Saved image to temporary file: {original_path}") | |
else: | |
raise gr.Error(f"μμλ PIL Imageκ° μλ {type(original_image)} νμ μ΄ μ 곡λμμ΅λλ€.") | |
# Gemini API νΈμΆ | |
image_path, text_response = generate_by_google_genai( | |
text=mod_instruction, | |
file_name=original_path | |
) | |
if image_path: | |
# λ°νλ μ΄λ―Έμ§ λ‘λ | |
try: | |
with open(image_path, "rb") as f: | |
image_data = f.read() | |
new_img = Image.open(io.BytesIO(image_data)) | |
results.append(new_img) | |
except Exception as img_err: | |
logging.error(f"[ERROR] Failed to process Gemini image: {img_err}") | |
results.append(original_image) | |
else: | |
logging.warning(f"[WARNING] μ΄λ―Έμ§κ° λ°νλμ§ μμμ΅λλ€. ν μ€νΈ μλ΅: {text_response}") | |
results.append(original_image) | |
except Exception as e: | |
logging.exception(f"Text modification error: {e}") | |
results.append(original_image) | |
return results | |
############################################################################### | |
# 4. ν μ€νΈ λ λλ§(λ¬Έμ μ½μ )μ© ν¨μ | |
############################################################################### | |
def gemini_text_rendering(image, rendering_text): | |
""" | |
μ£Όμ΄μ§ imageμ λν΄ Gemini APIλ‘ text_renderingμ μ μ© | |
""" | |
rendering_text_en = maybe_translate_to_english(rendering_text) | |
instruction = ( | |
f"Render the following text on the image in a clear, visually appealing manner: " | |
f"{rendering_text_en}." | |
) | |
# μ΄λ―Έμ§μ ν μ€νΈ μ½μ (A/B λ²μ 2ν μμ±) β μ¬κΈ°μλ 2ν μ€ μ²« λ²μ§Έλ§ λ°ν | |
rendered_images = change_text_in_image_two_times(image, instruction) | |
if rendered_images and len(rendered_images) > 0: | |
return rendered_images[0] | |
return image | |
def apply_text_rendering(image, rendering_text): | |
""" | |
rendering_textκ° μ‘΄μ¬νλ©΄ Gemini APIλ‘ ν μ€νΈ μ½μ μ μ μ©. | |
μμΌλ©΄ μλ³Έ μ΄λ―Έμ§λ₯Ό κ·Έλλ‘ λ°ν. | |
""" | |
if rendering_text and rendering_text.strip(): | |
return gemini_text_rendering(image, rendering_text) | |
return image | |
############################################################################### | |
# 5. Diffusion Pipeline λ‘λ λ° κΈ°λ³Έ μΈν | |
############################################################################### | |
SAVE_DIR = "saved_images" | |
if not os.path.exists(SAVE_DIR): | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
repo_id = "black-forest-labs/FLUX.1-dev" | |
adapter_id = "openfree/flux-chatgpt-ghibli-lora" | |
def load_model_with_retry(max_retries=5): | |
""" | |
λ‘컬 λλ Hugging Faceλ‘λΆν° λͺ¨λΈ(FLUX.1-dev) + LoRA μ΄λν°(weights)λ₯Ό λΆλ¬μ¨λ€. | |
""" | |
for attempt in range(max_retries): | |
try: | |
logging.info(f"Loading model attempt {attempt+1}/{max_retries}...") | |
pipeline = DiffusionPipeline.from_pretrained( | |
repo_id, | |
torch_dtype=torch.bfloat16, | |
use_safetensors=True, | |
resume_download=True | |
) | |
logging.info("Model loaded successfully, loading LoRA weights...") | |
pipeline.load_lora_weights(adapter_id) | |
pipeline = pipeline.to(device) | |
logging.info("Pipeline ready!") | |
return pipeline | |
except Exception as e: | |
if attempt < max_retries - 1: | |
wait_time = 10 * (attempt + 1) | |
logging.error(f"Error loading model: {e}. Retrying in {wait_time} seconds...") | |
import time | |
time.sleep(wait_time) | |
else: | |
raise Exception(f"Failed to load model after {max_retries} attempts: {e}") | |
pipeline = load_model_with_retry() | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def save_generated_image(image, prompt): | |
""" | |
μμ±λ μ΄λ―Έμ§λ₯Ό μ μ₯νλ©΄μ λ©ν μ 보λ₯Ό κΈ°λ‘νλ€. | |
""" | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
unique_id = str(uuid.uuid4())[:8] | |
filename = f"{timestamp}_{unique_id}.png" | |
filepath = os.path.join(SAVE_DIR, filename) | |
image.save(filepath) | |
metadata_file = os.path.join(SAVE_DIR, "metadata.txt") | |
with open(metadata_file, "a", encoding="utf-8") as f: | |
f.write(f"{filename}|{prompt}|{timestamp}\n") | |
return filepath | |
def load_generated_images(): | |
""" | |
μ μ₯λ μ΄λ―Έμ§λ₯Ό μ΅μ μμΌλ‘ λΆλ¬μ¨λ€. | |
""" | |
if not os.path.exists(SAVE_DIR): | |
return [] | |
image_files = [ | |
os.path.join(SAVE_DIR, f) | |
for f in os.listdir(SAVE_DIR) | |
if f.endswith(('.png', '.jpg', '.jpeg', '.webp')) | |
] | |
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True) | |
return image_files | |
def inference( | |
prompt: str, | |
seed: int, | |
randomize_seed: bool, | |
width: int, | |
height: int, | |
guidance_scale: float, | |
num_inference_steps: int, | |
lora_scale: float, | |
progress: gr.Progress = gr.Progress(track_tqdm=True), | |
): | |
""" | |
Diffusion Pipelineμ μ¬μ©ν΄ μ΄λ―Έμ§λ₯Ό μμ±. (LoRA μ€μΌμΌ, Steps λ± μ€μ κ°λ₯) | |
""" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
try: | |
image = pipeline( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
filepath = save_generated_image(image, prompt) | |
return image, seed, load_generated_images() | |
except Exception as e: | |
logging.error(f"Error during inference: {e}") | |
error_img = Image.new('RGB', (width, height), color='red') | |
return error_img, seed, load_generated_images() | |
############################################################################### | |
# 6. Gradio UI | |
############################################################################### | |
examples = [ | |
"Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves. The armor reflects the pink and purple hues of the alien sunset, creating an ethereal glow around the figure. [trigger]", | |
"Ghibli style young mechanic girl in a floating workshop, surrounded by hovering tools and glowing mechanical parts, her blue overalls covered in oil stains, tinkering with a semi-transparent robot companion. Magical sparks fly as she works, while floating islands with waterfalls drift past her open workshop window. [trigger]", | |
"Ghibli style ancient forest guardian robot, covered in moss and flowering vines, sitting peacefully in a crystal-clear lake. Its gentle eyes glow with soft blue light, while bioluminescent dragonflies dance around its weathered metal frame. Ancient tech symbols on its surface pulse with a gentle rhythm. [trigger]", | |
"Ghibli style sky whale transport ship, its metallic skin adorned with traditional Japanese patterns, gliding through cotton candy clouds at sunrise. Small floating gardens hang from its sides, where workers in futuristic kimonos tend to glowing plants. Rainbow auroras shimmer in the background. [trigger]", | |
"Ghibli style cyber-shrine maiden with flowing holographic robes, performing a ritual dance among floating lanterns and digital cherry blossoms. Her traditional headdress emits soft light patterns, while spirit-like AI constructs swirl around her in elegant patterns. The scene is set in a modern shrine with both ancient wood and sleek chrome elements. [trigger]", | |
"Ghibli style robot farmer tending to floating rice paddies in the sky, wearing a traditional straw hat with advanced sensors. Its gentle movements create ripples in the water as it plants glowing rice seedlings. Flying fish leap between the terraced fields, leaving trails of sparkles in their wake, while future Tokyo's spires gleam in the distance. [trigger]" | |
] | |
css = """ | |
:root { | |
--primary-color: #6a92cc; | |
--primary-hover: #557ab8; | |
--secondary-color: #f4c062; | |
--background-color: #f7f9fc; | |
--panel-background: #ffffff; | |
--text-color: #333333; | |
--border-radius: 12px; | |
--shadow: 0 4px 12px rgba(0,0,0,0.08); | |
--font-main: 'Poppins', -apple-system, BlinkMacSystemFont, sans-serif; | |
} | |
body { | |
background-color: var(--background-color); | |
font-family: var(--font-main); | |
} | |
.gradio-container { | |
margin: 0 auto; | |
max-width: 1200px !important; | |
} | |
.main-header { | |
text-align: center; | |
padding: 2rem 1rem 1rem; | |
background: linear-gradient(90deg, #6a92cc 0%, #8f7fc8 100%); | |
color: white; | |
margin-bottom: 2rem; | |
border-radius: var(--border-radius); | |
box-shadow: var(--shadow); | |
} | |
.main-header h1 { | |
font-size: 2.5rem; | |
margin-bottom: 0.5rem; | |
font-weight: 700; | |
text-shadow: 0 2px 4px rgba(0,0,0,0.2); | |
} | |
.main-header p { | |
font-size: 1rem; | |
margin-bottom: 0.5rem; | |
opacity: 0.9; | |
} | |
.main-header a { | |
color: var(--secondary-color); | |
text-decoration: none; | |
font-weight: 600; | |
transition: all 0.2s ease; | |
} | |
.main-header a:hover { | |
text-decoration: underline; | |
opacity: 0.9; | |
} | |
.container { | |
background-color: var(--panel-background); | |
padding: 1.5rem; | |
border-radius: var(--border-radius); | |
box-shadow: var(--shadow); | |
margin-bottom: 1.5rem; | |
} | |
button.primary { | |
background: var(--primary-color) !important; | |
border: none !important; | |
color: white !important; | |
padding: 10px 20px !important; | |
border-radius: 8px !important; | |
font-weight: 600 !important; | |
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important; | |
transition: all 0.2s ease !important; | |
} | |
button.primary:hover { | |
background: var(--primary-hover) !important; | |
transform: translateY(-2px) !important; | |
box-shadow: 0 4px 8px rgba(0,0,0,0.15) !important; | |
} | |
button.secondary { | |
background: white !important; | |
border: 1px solid #ddd !important; | |
color: var(--text-color) !important; | |
padding: 10px 20px !important; | |
border-radius: 8px !important; | |
font-weight: 500 !important; | |
box-shadow: 0 2px 5px rgba(0,0,0,0.05) !important; | |
transition: all 0.2s ease !important; | |
} | |
button.secondary:hover { | |
background: #f5f5f5 !important; | |
transform: translateY(-2px) !important; | |
} | |
.gr-box { | |
border-radius: var(--border-radius) !important; | |
border: 1px solid #e0e0e0 !important; | |
} | |
.gr-panel { | |
border-radius: var(--border-radius) !important; | |
} | |
.gr-input { | |
border-radius: 8px !important; | |
border: 1px solid #ddd !important; | |
padding: 12px !important; | |
} | |
.gr-form { | |
border-radius: var(--border-radius) !important; | |
background-color: var(--panel-background) !important; | |
} | |
.gr-accordion { | |
border-radius: var(--border-radius) !important; | |
overflow: hidden !important; | |
} | |
.gr-button { | |
border-radius: 8px !important; | |
} | |
.gallery-item { | |
border-radius: var(--border-radius) !important; | |
transition: all 0.3s ease !important; | |
} | |
.gallery-item:hover { | |
transform: scale(1.02) !important; | |
box-shadow: 0 6px 15px rgba(0,0,0,0.1) !important; | |
} | |
.tabs { | |
border-radius: var(--border-radius) !important; | |
overflow: hidden !important; | |
} | |
footer { | |
display: none !important; | |
} | |
.settings-accordion legend span { | |
font-weight: 600 !important; | |
} | |
.example-prompt { | |
font-size: 0.9rem; | |
color: #555; | |
padding: 8px; | |
background: #f5f7fa; | |
border-radius: 6px; | |
border-left: 3px solid var(--primary-color); | |
margin-bottom: 8px; | |
cursor: pointer; | |
transition: all 0.2s; | |
} | |
.example-prompt:hover { | |
background: #eef2f8; | |
} | |
.status-generating { | |
color: #ffa200; | |
font-weight: 500; | |
display: flex; | |
align-items: center; | |
gap: 8px; | |
} | |
.status-generating::before { | |
content: ""; | |
display: inline-block; | |
width: 12px; | |
height: 12px; | |
border-radius: 50%; | |
background-color: #ffa200; | |
animation: pulse 1.5s infinite; | |
} | |
.status-complete { | |
color: #00c853; | |
font-weight: 500; | |
display: flex; | |
align-items: center; | |
gap: 8px; | |
} | |
.status-complete::before { | |
content: ""; | |
display: inline-block; | |
width: 12px; | |
height: 12px; | |
border-radius: 50%; | |
background-color: #00c853; | |
} | |
@keyframes pulse { | |
0% { opacity: 0.6; } | |
50% { opacity: 1; } | |
100% { opacity: 0.6; } | |
} | |
.gr-accordion-title { | |
font-weight: 600 !important; | |
color: var(--text-color) !important; | |
} | |
.tabs button { | |
font-weight: 500 !important; | |
padding: 10px 16px !important; | |
} | |
.tabs button.selected { | |
font-weight: 600 !important; | |
color: var(--primary-color) !important; | |
background: rgba(106, 146, 204, 0.1) !important; | |
} | |
.gr-slider-container { | |
padding: 10px 0 !important; | |
} | |
.gr-prose h3 { | |
font-weight: 600 !important; | |
color: var(--primary-color) !important; | |
margin-bottom: 1rem !important; | |
} | |
""" | |
with gr.Blocks(css=css, analytics_enabled=False, theme="soft") as demo: | |
with gr.Column(): | |
gr.HTML(''' | |
<div class="main-header"> | |
<h1>β¨ FLUX Ghibli LoRA Generator β¨</h1> | |
<p>Community: <a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a></p> | |
</div> | |
''') | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Group(elem_classes="container"): | |
prompt = gr.Textbox( | |
label="Enter your imagination", | |
placeholder="Describe your Ghibli-style image here...", | |
lines=3 | |
) | |
# Text Rendering μ λ ₯λ | |
text_rendering = gr.Textbox( | |
label="Text Rendering (Multilingual: English, Korean...)", | |
placeholder="Man saying 'μλ ' in 'speech bubble'", | |
lines=1 | |
) | |
with gr.Row(): | |
run_button = gr.Button("β¨ Generate Image", elem_classes="primary") | |
clear_button = gr.Button("Clear", elem_classes="secondary") | |
with gr.Accordion("Advanced Settings", open=False, elem_classes="settings-accordion"): | |
with gr.Row(): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=768, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=3.5, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=30, | |
) | |
lora_scale = gr.Slider( | |
label="LoRA scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
) | |
with gr.Group(elem_classes="container"): | |
gr.Markdown("### β¨ Example Prompts") | |
examples_html = '\n'.join([f'<div class="example-prompt">{ex}</div>' for ex in examples]) | |
example_container = gr.HTML(examples_html) | |
with gr.Column(scale=4): | |
with gr.Group(elem_classes="container"): | |
generation_status = gr.HTML('<div class="status-complete">Ready to generate</div>') | |
result = gr.Image(label="Generated Image", elem_id="result-image") | |
seed_text = gr.Number(label="Used Seed", value=42) | |
with gr.Tabs(elem_classes="tabs") as tabs: | |
with gr.TabItem("Gallery"): | |
with gr.Group(elem_classes="container"): | |
gallery_header = gr.Markdown("### πΌοΈ Your Generated Masterpieces") | |
with gr.Row(): | |
refresh_btn = gr.Button("π Refresh Gallery", elem_classes="secondary") | |
generated_gallery = gr.Gallery( | |
label="Generated Images", | |
columns=3, | |
value=load_generated_images(), | |
height="500px", | |
elem_classes="gallery-item" | |
) | |
########################################################################### | |
# Gradio Helper Functions | |
########################################################################### | |
def refresh_gallery(): | |
return load_generated_images() | |
def clear_output(): | |
return "", gr.update(value=None), seed, '<div class="status-complete">Ready to generate</div>' | |
def before_generate(): | |
return '<div class="status-generating">Generating image...</div>' | |
def after_generate(image, seed_num, gallery): | |
return image, seed_num, gallery, '<div class="status-complete">Generation complete!</div>' | |
########################################################################### | |
# Gradio Event Wiring | |
########################################################################### | |
refresh_btn.click( | |
fn=refresh_gallery, | |
inputs=None, | |
outputs=generated_gallery, | |
) | |
clear_button.click( | |
fn=clear_output, | |
inputs=None, | |
outputs=[prompt, result, seed_text, generation_status] | |
) | |
# 1) μν νμ | |
# 2) μ΄λ―Έμ§ μμ± | |
# 3) μν μ λ°μ΄νΈ | |
# 4) ν μ€νΈ λ λλ§(μλ€λ©΄) | |
run_button.click( | |
fn=before_generate, | |
inputs=None, | |
outputs=generation_status, | |
).then( | |
fn=inference, | |
inputs=[ | |
prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
lora_scale, | |
], | |
outputs=[result, seed_text, generated_gallery], | |
).then( | |
fn=after_generate, | |
inputs=[result, seed_text, generated_gallery], | |
outputs=[result, seed_text, generated_gallery, generation_status], | |
).then( | |
fn=apply_text_rendering, | |
inputs=[result, text_rendering], | |
outputs=result | |
) | |
# prompt submit μμλ λμΌν μ²΄μΈ μ€ν | |
prompt.submit( | |
fn=before_generate, | |
inputs=None, | |
outputs=generation_status, | |
).then( | |
fn=inference, | |
inputs=[ | |
prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
lora_scale, | |
], | |
outputs=[result, seed_text, generated_gallery], | |
).then( | |
fn=after_generate, | |
inputs=[result, seed_text, generated_gallery], | |
outputs=[result, seed_text, generated_gallery, generation_status], | |
).then( | |
fn=apply_text_rendering, | |
inputs=[result, text_rendering], | |
outputs=result | |
) | |
# JSλ‘ μμ prompt ν΄λ¦ μ μλ μ±μ°κΈ° | |
gr.HTML(""" | |
<script> | |
document.addEventListener('DOMContentLoaded', function() { | |
setTimeout(() => { | |
const examples = document.querySelectorAll('.example-prompt'); | |
const promptInput = document.querySelector('textarea'); | |
examples.forEach(example => { | |
example.addEventListener('click', function() { | |
promptInput.value = this.textContent.trim(); | |
const event = new Event('input', { bubbles: true }); | |
promptInput.dispatchEvent(event); | |
}); | |
}); | |
}, 1000); | |
}); | |
</script> | |
""") | |
############################################################################### | |
# 7. μ€ν | |
############################################################################### | |
try: | |
demo.queue(concurrency_count=1, max_size=20) | |
demo.launch(debug=True, show_api=False) | |
except Exception as e: | |
logging.error(f"Error during launch: {e}") | |
logging.info("Trying alternative launch configuration...") | |
demo.launch(debug=True, show_api=False, share=False) | |