File size: 1,894 Bytes
a3555b5
 
 
 
2cf5554
 
a3555b5
 
 
 
 
 
e224bb7
a3555b5
 
 
 
 
 
e224bb7
a3555b5
e224bb7
a3555b5
e224bb7
a3555b5
355835e
2cf5554
 
 
 
 
 
 
 
 
 
a3555b5
 
2cf5554
a3555b5
 
 
 
d05911d
e224bb7
a3555b5
e224bb7
a3555b5
 
 
 
2cf5554
e224bb7
a3555b5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
from PIL import Image
import gradio as gr
from ultralytics import YOLO
from ultralytics.yolo.utils.ops import scale_image
import cv2

# Load the YOLO model
m_raw_model = YOLO("M-Raw.pt")
n_raw_model = YOLO("N-Raw.pt")
s_raw_model = YOLO("S-Raw.pt")

def snap(image, model, conf, iou):
    # Convert the image to a numpy array
    image = np.array(image)

    # Run the selected model
    results = None
    if model == "M-Raw":
        results = m_raw_model(image, conf=conf, iou=iou)
    elif model == "N-Raw":
        results = n_raw_model(image, conf=conf, iou=iou)
    elif model == "S-Raw":
        results = s_raw_model(image, conf=conf, iou=iou)

    # Convert the results list into an output image
    for result in results:
        classes = result.boxes.cls.cpu().numpy()
        probs = result.boxes.conf.cpu().numpy()
        boxes = result.boxes.xyxy[0].cpu().numpy()

        for i in range(len(boxes)):
            x1, y1, x2, y2 = boxes[i]
            x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
            cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(image, f"{classes[i]} {probs[i]:.2f}", (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

    # Convert the resulting image to a PIL image
    resulting_image = Image.fromarray(image)

    # Get the labels
    labels = results.pandas().xyxy[0]["name"].values

    # Sort the labels by their x-value first and then by their y-value
    # print(labels)

    return [resulting_image]


demo = gr.Interface(
    snap,
    [gr.Image(source="webcam", tool=None, streaming=True), gr.inputs.Radio(["M-Raw", "S-Raw", "N-Raw"], value="M-Raw"), gr.Slider(0, 1, value=0.6, label="Classifier Confidence Threshold"), gr.Slider(0, 1, value=0.7, label="IoU Threshold")],
    ["image"],
    title="Baybayin Instance Detection"
)

if __name__ == "__main__":
    demo.launch()