|
import spaces |
|
import bm25s |
|
import gradio as gr |
|
import json |
|
import Stemmer |
|
import time |
|
import torch |
|
import os |
|
from transformers import AutoTokenizer, AutoModel, pipeline , AutoModelForSequenceClassification, AutoModelForCausalLM |
|
from sentence_transformers import SentenceTransformer |
|
import faiss |
|
import numpy as np |
|
import pandas as pd |
|
import torch.nn.functional as F |
|
from datasets import concatenate_datasets, load_dataset, load_from_disk |
|
from huggingface_hub import hf_hub_download |
|
from contextual import ContextualAI |
|
from openai import AzureOpenAI |
|
from datetime import datetime |
|
import sys |
|
from datetime import datetime |
|
from pathlib import Path |
|
from uuid import uuid4 |
|
import pickle |
|
from huggingface_hub import CommitScheduler |
|
|
|
|
|
JSON_DATASET_DIR = Path("json_dataset") |
|
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True) |
|
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json" |
|
|
|
scheduler = CommitScheduler( |
|
repo_id="ai-law-society-lab/federal-queries-save-dataset", |
|
repo_type="dataset", |
|
folder_path=JSON_DATASET_DIR, |
|
path_in_repo="data", token=os.getenv('hf_token') |
|
) |
|
|
|
|
|
sandbox_api_key=os.getenv('AI_SANDBOX_KEY') |
|
sandbox_endpoint="https://api-ai-sandbox.princeton.edu/" |
|
sandbox_api_version="2024-02-01" |
|
|
|
def text_prompt_call(model_to_be_used, system_prompt, user_prompt ): |
|
client_gpt = AzureOpenAI( |
|
api_key=sandbox_api_key, |
|
azure_endpoint = sandbox_endpoint, |
|
api_version=sandbox_api_version |
|
) |
|
response = client_gpt.chat.completions.create( |
|
model=model_to_be_used, |
|
temperature=0.7, |
|
max_tokens=1000, |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt}, |
|
] |
|
) |
|
return response.choices[0].message.content |
|
|
|
|
|
def format_metadata_as_str(metadata): |
|
try: |
|
out = metadata["case_name"] + ", " + metadata["court_short_name"] + ", " + metadata["date_filed"] + ", precedential status " + metadata["precedential_status"] |
|
except: |
|
out = "" |
|
return out |
|
|
|
def show_user_query(user_message, history): |
|
''' |
|
Displays user query in the chatbot and removes from textbox. |
|
:param user_message: user query inputted. |
|
:param history: 2D array representing chatbot-user conversation. |
|
:return: |
|
''' |
|
return "", history + [[user_message, None]] |
|
|
|
|
|
def format_metadata_for_reranking(metadata, text, idx): |
|
|
|
keys = [["case_name", "case name"], ["court_short_name", "court"], ["date_filed", "year"], ["citation_count", "citation count"], ["precedential_status", "precedential status"]] |
|
out_str = [] |
|
out_str = ["<id>" + str(idx) + "</id>"] |
|
for key in keys: |
|
i,j = key |
|
|
|
|
|
out_str.append("<" + j + ">" + str(metadata[i]) + "</" + j + ">") |
|
out_str.append("<paragraph>" + " ".join(text.split()) + "</paragraph>") |
|
return "\n".join(out_str) + "\n" |
|
|
|
|
|
def run_extractive_qa(query, contexts): |
|
extracted_passages = extractive_qa([{"question": query, "context": context} for context in contexts]) |
|
return extracted_passages |
|
|
|
|
|
@spaces.GPU(duration=15) |
|
def respond_user_query(history): |
|
''' |
|
Overwrite the value of current pairing's history with generated text |
|
and displays response character-by-character with some lag. |
|
:param history: 2D array of chatbot history filled with user-bot interactions |
|
:return: history updated with bot's latest message. |
|
''' |
|
start_time_global = time.time() |
|
|
|
query = history[0][0] |
|
start_time_global = time.time() |
|
|
|
responses = run_retrieval(query) |
|
print("--- run retrieval: %s seconds ---" % (time.time() - start_time_global)) |
|
|
|
|
|
contexts = [individual_response["text"] for individual_response in responses][:NUM_RESULTS] |
|
extracted_passages = run_extractive_qa(query, contexts) |
|
|
|
for individual_response, extracted_passage in zip(responses, extracted_passages): |
|
start, end = extracted_passage["start"], extracted_passage["end"] |
|
|
|
text = individual_response["text"] |
|
text = text[:start] + " **" + text[start:end] + "** " + text[end:] |
|
|
|
|
|
formatted_response = "##### " |
|
if individual_response["meta_data"]: |
|
formatted_response += individual_response["meta_data"] |
|
else: |
|
formatted_response += individual_response["opinion_idx"] |
|
formatted_response += "\n" + text + "\n\n" |
|
history = history + [[None, formatted_response]] |
|
print("--- Extractive QA: %s seconds ---" % (time.time() - start_time_global)) |
|
|
|
return [history, responses] |
|
|
|
def switch_to_reviewing_framework(): |
|
''' |
|
Replaces textbox for entering user query with annotator review select. |
|
:return: updated visibility for textbox and radio button props. |
|
''' |
|
return gr.Textbox(visible=False), gr.Dataset(visible=False), gr.Textbox(visible=True, interactive=True), gr.Button(visible=True) |
|
|
|
def reset_interface(): |
|
''' |
|
Resets chatbot interface to original position where chatbot history, |
|
reviewing is invisbile is empty and user input textbox is visible. |
|
:return: textbox visibility, review radio button invisibility, |
|
next_button invisibility, empty chatbot |
|
''' |
|
|
|
|
|
|
|
|
|
return gr.Textbox(visible=True), gr.Button(visible=False), gr.Textbox(visible=False, value=""), None, gr.JSON(visible=False, value=[]), gr.Dataset(visible=True) |
|
|
|
|
|
def mark_like(response_json, like_data: gr.LikeData): |
|
index_of_msg_reviewed = like_data.index[0] - 1 |
|
|
|
response_json[index_of_msg_reviewed]["is_msg_liked"] = like_data.liked |
|
return response_json |
|
|
|
""" |
|
def save_json(name: str, greetings: str) -> None: |
|
|
|
""" |
|
def register_review(history, additional_feedback, response_json): |
|
''' |
|
Writes user review to output file. |
|
:param history: 2D array representing bot-user conversation so far. |
|
:return: None, writes to output file. |
|
''' |
|
|
|
res = { "user_query": history[0][0], |
|
"responses": response_json, |
|
"timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S'), |
|
"additional_feedback": additional_feedback |
|
} |
|
|
|
with scheduler.lock: |
|
with JSON_DATASET_PATH.open("a") as f: |
|
json.dump(res, f) |
|
f.write("\n") |
|
|
|
|
|
|
|
|
|
|
|
def load_bm25(): |
|
stemmer = Stemmer.Stemmer("english") |
|
retriever = bm25s.BM25.load("NJ_index_LLM_chunking", mmap=False) |
|
return retriever, stemmer |
|
|
|
def run_bm25(query): |
|
query_tokens = bm25s.tokenize(query, stemmer=stemmer) |
|
results, scores = retriever.retrieve(query_tokens, k=5) |
|
return results[0] |
|
|
|
def load_faiss_index(embeddings): |
|
nb, d = embeddings.shape |
|
faiss_index = faiss.IndexFlatL2(d) |
|
faiss_index.add(embeddings) |
|
return faiss_index |
|
|
|
|
|
def run_dense_retrieval(query): |
|
if "NV" in model_name: |
|
query_prefix = "Instruct: Given a question, retrieve passages that answer the question\nQuery: " |
|
max_length = 32768 |
|
print (query) |
|
with torch.no_grad(): |
|
query_embeddings = model.encode([query], instruction=query_prefix, max_length=max_length) |
|
query_embeddings = F.normalize(query_embeddings, p=2, dim=1) |
|
query_embeddings = query_embeddings.cpu().numpy() |
|
return query_embeddings |
|
|
|
|
|
|
|
def rerank_with_chatGPT(query, search_results): |
|
system_prompt = """You are given a list of search results for a query. Rerank the search results such that the paragraphs answering the query in the most comprehensive way are listed first. If multiple paragraphs are equally good, prioritize these according to the metadata as stated in the query. If the query doesn't specify this further, prioritize first paragraphs from higher courts, then paragraphs with more citations, then paragraphs from more recent opinions and lastly published opinions. |
|
Return a python list with the ids of the five highest ranking results, nothing else. |
|
<query>""" + query + "</query>\n\n" |
|
user_prompt = [] |
|
for i in search_results[:15]: |
|
user_prompt.append(format_metadata_for_reranking(i["metadata_reranking"], i["text"], i["index"])) |
|
user_prompt = "\n".join(user_prompt) |
|
out = text_prompt_call("gpt-4o", system_prompt, user_prompt) |
|
try: |
|
out = literal_eval(out) |
|
except: |
|
out = search_results[:5] |
|
search_results_as_dict = {str(i["index"]):i for i in search_results} |
|
out_dict = [] |
|
for i in out: |
|
out_dict.append(search_results_as_dict[i]) |
|
return out_dict |
|
|
|
|
|
|
|
|
|
def run_retrieval(query): |
|
query = " ".join(query.split()) |
|
print ("query", query) |
|
|
|
query_embeddings = run_dense_retrieval(query) |
|
query_embeddings = pca_model.transform(query_embeddings) |
|
D, I = faiss_index.search(query_embeddings, 100) |
|
scores_embeddings = D[0] |
|
indices_embeddings = I[0] |
|
indices_embeddings = [int(i) for i in indices_embeddings] |
|
|
|
|
|
results = [{"index":i, "NV_score":j, "text":ds_paragraphs[i]["paragraph"]} for i,j in zip(indices_embeddings, scores_embeddings)] |
|
|
|
out_dict = [] |
|
covered = set() |
|
for item in results: |
|
index = item["index"] |
|
item["query"] = query |
|
item["opinion_idx"] = str(ds_paragraphs[index]["idx"]) |
|
|
|
|
|
if item["opinion_idx"] in covered: |
|
continue |
|
covered.add(item["opinion_idx"]) |
|
|
|
if item["opinion_idx"] in metadata: |
|
item["meta_data"] = format_metadata_as_str(metadata[item["opinion_idx"]]) |
|
else: |
|
item["meta_data"] = "" |
|
if item["opinion_idx"] in metadata: |
|
item["metadata_reranking"] = metadata[item["opinion_idx"]] |
|
else: |
|
item["metadata_reranking"] = "" |
|
out_dict.append(item) |
|
print (out_dict[:20]) |
|
out_dict = rerank_with_chatGPT(query, out_dict)[:NUM_RESULTS] |
|
|
|
NUM_RESULTS = 5 |
|
model_name = 'nvidia/NV-Embed-v2' |
|
|
|
|
|
device = torch.device("mps") |
|
|
|
extractive_qa = pipeline("question-answering", model="ai-law-society-lab/extractive-qa-model", tokenizer="FacebookAI/roberta-large", device_map="auto", token=os.getenv('hf_token')) |
|
|
|
ds_paragraphs = load_dataset("ai-law-society-lab/federal-caselaw-paragraphs", token=os.getenv('hf_token'))["train"] |
|
|
|
ds = load_dataset("ai-law-society-lab/federal-caselaw-embeddings-PCA", token=os.getenv('hf_token'))["train"] |
|
ds = ds.with_format("np") |
|
faiss_index = load_faiss_index(ds["embeddings"]) |
|
|
|
|
|
with open('PCA_model.pkl', 'rb') as f: |
|
pca_model = pickle.load(f) |
|
|
|
|
|
with open("Federal_caselaw_metadata.json") as f: |
|
metadata = json.load(f) |
|
|
|
|
|
def load_embeddings_model(model_name = "intfloat/e5-large-v2"): |
|
if "NV" in model_name: |
|
|
|
model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.float16, device_map="auto") |
|
model.eval() |
|
return model |
|
|
|
if "NV" in model_name: |
|
model = load_embeddings_model(model_name=model_name) |
|
|
|
|
|
examples = ["Can officers always order a passenger out of a car?"] |
|
|
|
|
|
|
|
css = """ |
|
.svelte-i3tvor {visibility: hidden} |
|
.row.svelte-hrj4a0.unequal-height { |
|
align-items: stretch !important |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css, theme = gr.themes.Monochrome(primary_hue="pink",)) as demo: |
|
chatbot = gr.Chatbot(height="45vw", autoscroll=False) |
|
query_textbox = gr.Textbox() |
|
|
|
examples = gr.Examples(examples, query_textbox) |
|
response_json = gr.JSON(visible=False, value=[]) |
|
print (response_json) |
|
chatbot.like(mark_like, response_json, response_json) |
|
|
|
feedback_textbox = gr.Textbox(label="Additional feedback?", visible=False) |
|
next_button = gr.Button(value="Submit Feedback", visible=False) |
|
|
|
query_textbox.submit(show_user_query, [query_textbox, chatbot], [query_textbox, chatbot], queue=False).then( |
|
respond_user_query, chatbot, [chatbot, response_json]).then( |
|
switch_to_reviewing_framework, None, [query_textbox, examples.dataset, feedback_textbox, next_button] |
|
) |
|
|
|
|
|
next_button.click(register_review, [chatbot, feedback_textbox, response_json], None).then( |
|
reset_interface, None, [query_textbox, next_button, feedback_textbox, chatbot, response_json, examples.dataset]) |
|
|
|
|
|
demo.launch() |