Multiscaler / app.R
cjerzak's picture
Update app.R
3633b24 verified
raw
history blame
13.6 kB
# setwd('~/Dropbox/ImageSeq/')
options(error = NULL)
library(shiny)
library(dplyr)
library(fields) # For image.plot in heatMap
library(akima) # For interpolation
# Load the data from sm.csv
sm <- read.csv("sm.csv")
# Define function to convert to numeric
f2n <- function(x) as.numeric(as.character(x))
# Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims
sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1]))
sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2]))
# Heatmap function with optimal_point parameter
heatMap <- function(x, y, z,
main = "",
N, yaxt = NULL,
xlab = "",
ylab = "",
horizontal = FALSE,
useLog = "",
legend.width = 1,
ylim = NULL,
xlim = NULL,
zlim = NULL,
add.legend = TRUE,
legend.only = FALSE,
vline = NULL,
col_vline = "black",
hline = NULL,
col_hline = "black",
cex.lab = 2,
cex.main = 2,
myCol = NULL,
includeMarginals = FALSE,
marginalJitterSD_x = 0.01,
marginalJitterSD_y = 0.01,
openBrowser = FALSE,
optimal_point = NULL) {
if (openBrowser) { browser() }
s_ <- akima::interp(x = x, y = y, z = z,
xo = seq(min(x), max(x), length = N),
yo = seq(min(y), max(y), length = N),
duplicate = "mean")
if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) }
if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) }
imageFxn <- if (add.legend) fields::image.plot else graphics::image
if (!grepl(useLog, pattern = "z")) {
imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main,
cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
legend.width = legend.width, horizontal = horizontal, yaxt = yaxt,
zlim = zlim, legend.only = legend.only)
} else {
useLog <- gsub(useLog, pattern = "z", replace = "")
zTicks <- summary(c(s_$z))
ep_ <- 0.001
zTicks[zTicks < ep_] <- ep_
zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10))
zTicks <- round(zTicks, abs(min(log(zTicks, base = 10))))
s_$z[s_$z < ep_] <- ep_
imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt,
axis.args = list(at = log(zTicks), labels = zTicks),
main = main, cex.main = cex.main, xlab = xlab, ylab = ylab,
log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim,
horizontal = horizontal, col = myCol, legend.width = legend.width,
zlim = zlim, legend.only = legend.only)
}
if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) }
if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) }
if (includeMarginals) {
points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)),
rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray")
points(rep(xlim[1] * 1.1, length(x)),
y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray")
}
# Add green star at optimal point if provided
if (!is.null(optimal_point)) {
points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 3, lwd = 4)
}
}
##############################################################################
# IMPORTANT: Store the meaningful labels for metric in a named vector.
# The "name" is what is displayed to the user in the dropdown,
# while the "value" is the underlying column in the dataset.
##############################################################################
metric_choices <- c(
"Mean AUTOC RATE Ratio" = "AUTOC_rate_std_ratio_mean",
"Mean AUTOC RATE" = "AUTOC_rate_mean",
"Mean SD of AUTOC RATE" = "AUTOC_rate_std_mean",
"Mean AUTOC RATE Ratio with PC" = "AUTOC_rate_std_ratio_mean_pc",
"Mean AUTOC RATE with PC" = "AUTOC_rate_mean_pc",
"Mean SD of AUTOC RATE with PC" = "AUTOC_rate_std_mean_pc",
"Mean Variable Importance (Image 1)" = "MeanVImportHalf1",
"Mean Variable Importance (Image 2)" = "MeanVImportHalf2",
"Mean Fraction of Top k Features (Image 1)" = "FracTopkHalf1",
"Mean RMSE" = "RMSE"
)
##############################################################################
# Helper function to retrieve the *label* from its code
##############################################################################
getMetricLabel <- function(metric_value) {
# This returns, e.g., "Mean AUTOC RATE" if metric_value == "AUTOC_rate_mean".
# If it doesn't find a match, return the code itself.
lbl <- names(metric_choices)[which(metric_choices == metric_value)]
if (length(lbl) == 0) return(metric_value)
lbl
}
# UI Definition
ui <- fluidPage(
titlePanel("Multiscale Heatmap Explorer"),
sidebarLayout(
sidebarPanel(
selectInput("application", "Application",
choices = unique(sm$application),
selected = unique(sm$application)[1]),
selectInput("model", "Model",
choices = unique(sm$optimizeImageRep),
selected = "clip-rsicd"),
########################################################################
# Use our named vector 'metric_choices' directly in selectInput
########################################################################
selectInput("metric", "Metric",
choices = metric_choices,
selected = "AUTOC_rate_std_ratio_mean"),
checkboxInput("compareToBest", "Compare to best single scale", value = FALSE)
),
mainPanel(
plotOutput("heatmapPlot", height = "600px"),
div(style = "margin-top: 10px; font-style: italic;", uiOutput("contextNote"))
)
)
)
# Server Definition
server <- function(input, output) {
# Function to determine whether to maximize or minimize the metric
get_better_direction <- function(metric) {
#if (grepl("std|RMSE", metric)) "min" else "max"
if (grepl(metric, pattern = "std_mean|RMSE")) "min" else "max"
}
# Reactive data processing
filteredData <- reactive({
df <- sm %>%
filter(application == input$application,
optimizeImageRep == input$model) %>%
mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight),
MaxImageDimsLeft,
MaxImageDimsRight))
if (nrow(df) == 0) return(NULL)
df
})
# Reactive expression to compute interpolated data and optimal point
interpolated_data <- reactive({
data <- filteredData()
if (is.null(data)) return(NULL)
# Group data
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
n = n(),
.groups = "drop"
)
better_dir <- get_better_direction(input$metric)
single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
else min(single_scale_data$mean_metric, na.rm = TRUE)
} else NA
grouped_data <- grouped_data %>%
mutate(improvement = if (better_dir == "max") {
mean_metric - best_single_scale_metric
} else {
best_single_scale_metric - mean_metric
})
# Select z based on checkbox
z_to_interpolate <- if (input$compareToBest) grouped_data$improvement else grouped_data$mean_metric
x <- grouped_data$MaxImageDimsLeft
y <- grouped_data$MaxImageDimsRight
# Check if interpolation is possible
if (length(unique(x)) < 2 || length(unique(y)) < 2 || nrow(grouped_data) < 3) {
return(NULL)
}
# Compute interpolated grid
s_ <- akima::interp(
x = x,
y = y,
z = z_to_interpolate,
xo = seq(min(x), max(x), length = 50),
yo = seq(min(y), max(y), length = 50),
duplicate = "mean"
)
# Find optimal point from interpolated grid
max_idx <- if (input$compareToBest || better_dir == "max") {
which.max(s_$z)
} else {
which.min(s_$z)
}
row_col <- arrayInd(max_idx, .dim = dim(s_$z))
optimal_x <- s_$x[row_col[1,1]]
optimal_y <- s_$y[row_col[1,2]]
optimal_z <- s_$z[row_col[1,1], row_col[1,2]]
list(
s_ = s_,
optimal_point = list(x = optimal_x, y = optimal_y, z = optimal_z)
)
})
# Heatmap Output
output$heatmapPlot <- renderPlot({
interp_data <- interpolated_data()
if (is.null(interp_data)) {
plot.new()
text(0.5, 0.5, "Insufficient data for interpolation", cex = 1.5)
return(NULL)
}
data <- filteredData()
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
.groups = "drop"
)
better_dir <- get_better_direction(input$metric)
single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
else min(single_scale_data$mean_metric, na.rm = TRUE)
} else NA
grouped_data <- grouped_data %>%
mutate(improvement = if (better_dir == "max") {
mean_metric - best_single_scale_metric
} else {
best_single_scale_metric - mean_metric
})
# Retrieve the *label* for the chosen metric:
chosen_metric_label <- getMetricLabel(input$metric)
if (input$compareToBest) {
z <- grouped_data$improvement
main_title <- paste(input$application, "-", chosen_metric_label, "\n Improvement Over Best Single Scale")
} else {
z <- grouped_data$mean_metric
main_title <- paste(input$application, "-", chosen_metric_label)
}
x <- grouped_data$MaxImageDimsLeft
y <- grouped_data$MaxImageDimsRight
zlim <- range(z, na.rm = TRUE)
par(mar=c(5,5,5,1))
customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
heatMap(
x = x,
y = y,
z = z,
N = 50,
main = main_title,
xlab = "Image Dimension 1",
ylab = "Image Dimension 2",
useLog = "xy",
myCol = customPalette,
cex.lab = 1.4,
zlim = zlim,
optimal_point = interp_data$optimal_point
)
})
# Contextual Note Output
output$contextNote <- renderText({
SharedContextText <- c(
"The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
"The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.",
"For more information, see <a href='https://arxiv.org/abs/2411.02134' target='_blank'>https://arxiv.org/abs/2411.02134</a>",
"<div style='font-size: 10px; line-height: 1.5;'>",
"<b>Glossary:</b><br>",
"• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>",
"• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>",
"• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
"• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
"• <b>RATE Ratio:</b> A t-statistic-like quantity indicating how much a data-model combination captures treatment-effect variation. Ratio of the RATE and its standard error. It can employ two weighting scemes (AUTOC and Qini).<br>",
"• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
"• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
"• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
"</div>"
)
chosen_metric_label <- getMetricLabel(input$metric)
if (input$compareToBest) {
c(
paste(
"This heatmap shows the improvement in",
paste0("'", chosen_metric_label, "'"),
"over the best single scale for",
input$application,
"using the", input$model, "model. The green star marks the optimal point."
),
SharedContextText
)
} else {
c(
paste(
"This heatmap displays",
paste0("'", chosen_metric_label, "'"),
"for", input$application,
"using the", input$model,
"model across different image dimension combinations. The green star marks the optimal point."
),
SharedContextText
)
}
})
}
# Run the Shiny App
shinyApp(ui = ui, server = server)