cjerzak's picture
Update app.R
93e81e3 verified
raw
history blame
12.3 kB
# Script: app_ono.R
# setwd("~/Dropbox/OptimizingSI/Analysis/ono")
options(error = NULL)
library(shiny)
library(ggplot2)
library(strategize)
library(dplyr)
# Custom plotting function for optimal strategy distributions
plot_factor <- function(pi_star_list, pi_star_se_list, factor_name, zStar = 1.96) {
probs <- lapply(pi_star_list, function(x) x[[factor_name]])
ses <- lapply(pi_star_se_list, function(x) x[[factor_name]])
levels <- names(probs[[1]])
n_strategies <- length(probs)
# Create data frame for plotting
df <- do.call(rbind, lapply(1:n_strategies, function(i) {
data.frame(
Strategy = if (n_strategies == 1) "Optimal" else c("Democrat", "Republican")[i],
Level = levels,
Probability = probs[[i]],
SE = ses[[i]]
)
}))
# Plot with ggplot2
p <- ggplot(df, aes(x = Level, y = Probability, fill = Strategy)) +
geom_bar(stat = "identity", position = position_dodge(width = 0.9), width = 0.8) +
geom_errorbar(aes(ymin = Probability - zStar * SE, ymax = Probability + zStar * SE),
position = position_dodge(width = 0.9), width = 0.25) +
labs(title = paste("Optimal Distribution for", factor_name),
x = "Level", y = "Probability") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
legend.position = "top") +
scale_fill_manual(values = c("Democrat" = "#89cff0", "Republican" = "red", "Optimal" = "black"))
return(p)
}
# UI Definition
ui <- fluidPage(
titlePanel("Exploring strategize with the candidate choice conjoint data"),
sidebarLayout(
sidebarPanel(
h4("Analysis Options"),
radioButtons("case_type", "Case Type:",
choices = c("Average", "Adversarial"),
selected = "Average"),
conditionalPanel(
condition = "input.case_type == 'Average'",
selectInput("respondent_group", "Respondent Group:",
choices = c("All", "Democrat", "Independent", "Republican"),
selected = "All")
),
# Add a single numeric input for lambda
numericInput("lambda_input", "Lambda (regularization):",
value = 0.01, min = 1e-6, max = 10, step = 0.01),
actionButton("compute", "Compute Results", class = "btn-primary"),
hr(),
h4("Visualization"),
selectInput("factor", "Select Factor to Display:",
choices = NULL),
hr(),
h5("Instructions:"),
p("1. Select a case type and, for Average case, a respondent group."),
p("2. Specify the single lambda to be used by strategize."),
p("3. Click 'Compute Results' to generate optimal strategies."),
p("4. Choose a factor to view its distribution.")
),
mainPanel(
tabsetPanel(
tabPanel("Optimal Strategy Plot",
plotOutput("strategy_plot", height = "600px")),
tabPanel("Q Value",
verbatimTextOutput("q_value"),
p("Q represents the estimated outcome (e.g., selection probability) under the optimal strategy, with 95% confidence interval.")),
tabPanel("About",
h3("About This App"),
p("This Shiny app explores the `strategize` package using Ono experimental data. It computes optimal strategies for Average (optimizing for a respondent group) and Adversarial (optimizing for both parties in competition) cases on the fly."),
p("**Average Case**: Optimizes candidate characteristics for a selected respondent group."),
p("**Adversarial Case**: Finds equilibrium strategies for Democrats and Republicans, identified by 'Pro-life' stance.")
)
)
)
)
)
# Server Definition
server <- function(input, output, session) {
# Load data
load("Processed_OnoData.RData")
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv")
# Update factor choices dynamically
observe({
if (input$case_type == "Average") {
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office")]
} else {
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office", "Party.affiliation", "Party.competition")]
}
updateSelectInput(session, "factor", choices = factors, selected = factors[1])
})
# Reactive computation triggered by button
result <- eventReactive(input$compute, {
withProgress(message = "Computing optimal strategies...", value = 0, {
# Increment progress
incProgress(0.2, detail = "Preparing data...")
# Common hyperparameters (mirroring QRun_Apps.R)
params <- list(
nSGD = 1000L,
batch_size = 50L,
penalty_type = "KL",
nFolds = 3L,
use_optax = TRUE,
compute_se = FALSE, # Set to FALSE for quicker results
conf_level = 0.95,
conda_env = "strategize",
conda_env_required = TRUE
)
# Grab the single user-chosen lambda
my_lambda <- input$lambda_input
if (input$case_type == "Average") {
# Subset data for Average case
if (input$respondent_group == "All") {
indices <- which( my_data$Office == "President" )
} else {
indices <- which(my_data_FULL$R_Partisanship == input$respondent_group &
my_data$Office == "President")
}
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
!colnames(FACTOR_MAT_FULL) %in% c("Office","Party.affiliation","Party.competition")]
Yobs <- Yobs_FULL[indices]
X <- X_FULL[indices, ]
log_pr_w <- log_pr_w_FULL[indices]
pair_id <- pair_id_FULL[indices]
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% "Office"]
incProgress(0.4, detail = "Running strategize...")
# Compute with strategize using a single lambda
Qoptimized <- strategize(
Y = Yobs,
W = FACTOR_MAT,
X = X,
pair_id = pair_id,
p_list = assignmentProbList[colnames(FACTOR_MAT)],
lambda = my_lambda,
diff = TRUE,
adversarial = FALSE,
K = 1L, # Base analysis
nSGD = params$nSGD,
penalty_type = params$penalty_type,
folds = params$nFolds,
use_optax = params$use_optax,
compute_se = params$compute_se,
conf_level = params$conf_level,
conda_env = params$conda_env,
conda_env_required = params$conda_env_required
)
} else { # Adversarial case
# Use full data, drop specific factors
DROP_FACTORS <- c("Office", "Party.affiliation", "Party.competition")
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP_FACTORS]
Yobs <- Yobs_FULL
X <- X_FULL
log_pr_w <- log_pr_w_FULL
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP_FACTORS]
# Prepare slate_list (simplified from QRun_Apps.R)
incProgress(0.3, detail = "Preparing slate data...")
FactorOptions <- apply(FACTOR_MAT, 2, table)
prior_alpha <- 10
Primary_D <- Primary2016[Primary2016$Party == "Democratic", colnames(FACTOR_MAT)]
Primary_R <- Primary2016[Primary2016$Party == "Republican", colnames(FACTOR_MAT)]
Primary_D_slate <- lapply(colnames(Primary_D), function(col) {
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha
Empirical_ <- table(Primary_D[[col]])
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"]
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_
prop.table(posterior_alpha)
})
names(Primary_D_slate) <- colnames(Primary_D)
Primary_R_slate <- lapply(colnames(Primary_R), function(col) {
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha
Empirical_ <- table(Primary_R[[col]])
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"]
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_
prop.table(posterior_alpha)
})
names(Primary_R_slate) <- colnames(Primary_R)
slate_list <- list("Democratic" = Primary_D_slate, "Republican" = Primary_R_slate)
# subset data
indices <- which( my_data$R_Partisanship %in% c("Republican","Democrat") &
my_data$Office == "President" )
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
!colnames(FACTOR_MAT_FULL) %in% c("Office",
"Party.competition",
"Party.affiliation")]
Yobs <- Yobs_FULL[indices]
my_data_red <- my_data_FULL[indices,]
pair_id <- pair_id_FULL[indices]
cluster_var <- cluster_var_FULL[ indices ]
my_data_red$Party.affiliation_clean <- ifelse(my_data_red$Party.affiliation == "Republican Party",
yes = "Republican", no = ifelse(my_data_red$Party.affiliation == "Democratic Party",
yes = "Democrat",no = "Independent"))
# subset cols
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)]
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)]
incProgress(0.4, detail = "Running strategize...")
# Compute with strategize using a single lambda
Qoptimized <- strategize(
Y = Yobs,
W = FACTOR_MAT,
#X = X,
X = NULL,
p_list = assignmentProbList,
slate_list = slate_list,
varcov_cluster_variable = cluster_var,
competing_group_variable_respondent = my_data_red$R_Partisanship,
competing_group_variable_candidate = my_data_red$Party.affiliation_clean,
competing_group_competition_variable_candidate = my_data_red$Party.competition,
pair_id = pair_id,
respondent_id = my_data_red$respondentIndex,
respondent_task_id = my_data_red$task,
profile_order = my_data_red$profile,
lambda = my_lambda,
diff = TRUE,
force_gaussian = FALSE,
adversarial = TRUE,
nFolds_glm = 3L,
K = 1L,
nMonte_adversarial = 100L,
nSGD = params$nSGD,
penalty_type = params$penalty_type,
use_optax = params$use_optax,
compute_se = params$compute_se,
conf_level = params$conf_level,
conda_env = params$conda_env,
conda_env_required = params$conda_env_required
)
# Identify Democrat vs Republican based on "Pro-life" stance
prolife_probs <- c(Qoptimized$pi_star_point$k1$Position.on.abortion["Pro-life"],
Qoptimized$pi_star_point$k2$Position.on.abortion["Pro-life"])
which_repub <- which.max(prolife_probs)
if (which_repub == 1) {
# Swap
Qoptimized$pi_star_point <- list(k1 = Qoptimized$pi_star_point$k2, k2 = Qoptimized$pi_star_point$k1)
Qoptimized$pi_star_se <- list(k1 = Qoptimized$pi_star_se$k2, k2 = Qoptimized$pi_star_se$k1)
}
}
incProgress(0.8, detail = "Finalizing results...")
return(Qoptimized)
})
})
# Render strategy plot
output$strategy_plot <- renderPlot({
req(result())
factor_name <- input$factor
pi_star_list <- result()$pi_star_point
pi_star_se_list <- result()$pi_star_se
plot_factor(pi_star_list, pi_star_se_list, factor_name)
})
# Render Q value
output$q_value <- renderText({
req(result())
q_point <- result()$Q_point_mEst
q_se <- result()$Q_se_mEst
paste("Estimated Q Value: ", sprintf("%.3f ± %.3f", q_point, 1.96 * q_se))
})
}
# Run the app
shinyApp(ui, server)