Spaces:
Sleeping
Sleeping
# Script: app_ono.R | |
# setwd("~/Dropbox/OptimizingSI/Analysis/ono") | |
options(error = NULL) | |
library(shiny) | |
library(ggplot2) | |
library(strategize) | |
library(dplyr) | |
# Custom plotting function for optimal strategy distributions | |
plot_factor <- function(pi_star_list, pi_star_se_list, factor_name, zStar = 1.96) { | |
probs <- lapply(pi_star_list, function(x) x[[factor_name]]) | |
ses <- lapply(pi_star_se_list, function(x) x[[factor_name]]) | |
levels <- names(probs[[1]]) | |
n_strategies <- length(probs) | |
# Create data frame for plotting | |
df <- do.call(rbind, lapply(1:n_strategies, function(i) { | |
data.frame( | |
Strategy = if (n_strategies == 1) "Optimal" else c("Democrat", "Republican")[i], | |
Level = levels, | |
Probability = probs[[i]], | |
SE = ses[[i]] | |
) | |
})) | |
# Plot with ggplot2 | |
p <- ggplot(df, aes(x = Level, y = Probability, fill = Strategy)) + | |
geom_bar(stat = "identity", position = position_dodge(width = 0.9), width = 0.8) + | |
geom_errorbar(aes(ymin = Probability - zStar * SE, ymax = Probability + zStar * SE), | |
position = position_dodge(width = 0.9), width = 0.25) + | |
labs(title = paste("Optimal Distribution for", factor_name), | |
x = "Level", y = "Probability") + | |
theme_minimal() + | |
theme(axis.text.x = element_text(angle = 45, hjust = 1), | |
legend.position = "top") + | |
scale_fill_manual(values = c("Democrat" = "#89cff0", "Republican" = "red", "Optimal" = "black")) | |
return(p) | |
} | |
# UI Definition | |
ui <- fluidPage( | |
titlePanel("Exploring strategize with the candidate choice conjoint data"), | |
sidebarLayout( | |
sidebarPanel( | |
h4("Analysis Options"), | |
radioButtons("case_type", "Case Type:", | |
choices = c("Average", "Adversarial"), | |
selected = "Average"), | |
conditionalPanel( | |
condition = "input.case_type == 'Average'", | |
selectInput("respondent_group", "Respondent Group:", | |
choices = c("All", "Democrat", "Independent", "Republican"), | |
selected = "All") | |
), | |
# Add a single numeric input for lambda | |
numericInput("lambda_input", "Lambda (regularization):", | |
value = 0.01, min = 1e-6, max = 10, step = 0.01), | |
actionButton("compute", "Compute Results", class = "btn-primary"), | |
hr(), | |
h4("Visualization"), | |
selectInput("factor", "Select Factor to Display:", | |
choices = NULL), | |
hr(), | |
h5("Instructions:"), | |
p("1. Select a case type and, for Average case, a respondent group."), | |
p("2. Specify the single lambda to be used by strategize."), | |
p("3. Click 'Compute Results' to generate optimal strategies."), | |
p("4. Choose a factor to view its distribution.") | |
), | |
mainPanel( | |
tabsetPanel( | |
tabPanel("Optimal Strategy Plot", | |
plotOutput("strategy_plot", height = "600px")), | |
tabPanel("Q Value", | |
verbatimTextOutput("q_value"), | |
p("Q represents the estimated outcome (e.g., selection probability) under the optimal strategy, with 95% confidence interval.")), | |
tabPanel("About", | |
h3("About This App"), | |
p("This Shiny app explores the `strategize` package using Ono experimental data. It computes optimal strategies for Average (optimizing for a respondent group) and Adversarial (optimizing for both parties in competition) cases on the fly."), | |
p("**Average Case**: Optimizes candidate characteristics for a selected respondent group."), | |
p("**Adversarial Case**: Finds equilibrium strategies for Democrats and Republicans, identified by 'Pro-life' stance.") | |
) | |
) | |
) | |
) | |
) | |
# Server Definition | |
server <- function(input, output, session) { | |
# Load data | |
load("Processed_OnoData.RData") | |
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv") | |
# Update factor choices dynamically | |
observe({ | |
if (input$case_type == "Average") { | |
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office")] | |
} else { | |
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office", "Party.affiliation", "Party.competition")] | |
} | |
updateSelectInput(session, "factor", choices = factors, selected = factors[1]) | |
}) | |
# Reactive computation triggered by button | |
result <- eventReactive(input$compute, { | |
withProgress(message = "Computing optimal strategies...", value = 0, { | |
# Increment progress | |
incProgress(0.2, detail = "Preparing data...") | |
# Common hyperparameters (mirroring QRun_Apps.R) | |
params <- list( | |
nSGD = 1000L, | |
batch_size = 50L, | |
penalty_type = "KL", | |
nFolds = 3L, | |
use_optax = TRUE, | |
compute_se = FALSE, # Set to FALSE for quicker results | |
conf_level = 0.95, | |
conda_env = "strategize", | |
conda_env_required = TRUE | |
) | |
# Grab the single user-chosen lambda | |
my_lambda <- input$lambda_input | |
if (input$case_type == "Average") { | |
# Subset data for Average case | |
if (input$respondent_group == "All") { | |
indices <- which( my_data$Office == "President" ) | |
} else { | |
indices <- which(my_data_FULL$R_Partisanship == input$respondent_group & | |
my_data$Office == "President") | |
} | |
FACTOR_MAT <- FACTOR_MAT_FULL[indices, | |
!colnames(FACTOR_MAT_FULL) %in% c("Office","Party.affiliation","Party.competition")] | |
Yobs <- Yobs_FULL[indices] | |
X <- X_FULL[indices, ] | |
log_pr_w <- log_pr_w_FULL[indices] | |
pair_id <- pair_id_FULL[indices] | |
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% "Office"] | |
incProgress(0.4, detail = "Running strategize...") | |
# Compute with strategize using a single lambda | |
Qoptimized <- strategize( | |
Y = Yobs, | |
W = FACTOR_MAT, | |
X = X, | |
pair_id = pair_id, | |
p_list = assignmentProbList[colnames(FACTOR_MAT)], | |
lambda = my_lambda, | |
diff = TRUE, | |
adversarial = FALSE, | |
K = 1L, # Base analysis | |
nSGD = params$nSGD, | |
penalty_type = params$penalty_type, | |
folds = params$nFolds, | |
use_optax = params$use_optax, | |
compute_se = params$compute_se, | |
conf_level = params$conf_level, | |
conda_env = params$conda_env, | |
conda_env_required = params$conda_env_required | |
) | |
} else { # Adversarial case | |
# Use full data, drop specific factors | |
DROP_FACTORS <- c("Office", "Party.affiliation", "Party.competition") | |
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP_FACTORS] | |
Yobs <- Yobs_FULL | |
X <- X_FULL | |
log_pr_w <- log_pr_w_FULL | |
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP_FACTORS] | |
# Prepare slate_list (simplified from QRun_Apps.R) | |
incProgress(0.3, detail = "Preparing slate data...") | |
FactorOptions <- apply(FACTOR_MAT, 2, table) | |
prior_alpha <- 10 | |
Primary_D <- Primary2016[Primary2016$Party == "Democratic", colnames(FACTOR_MAT)] | |
Primary_R <- Primary2016[Primary2016$Party == "Republican", colnames(FACTOR_MAT)] | |
Primary_D_slate <- lapply(colnames(Primary_D), function(col) { | |
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha | |
Empirical_ <- table(Primary_D[[col]]) | |
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"] | |
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_ | |
prop.table(posterior_alpha) | |
}) | |
names(Primary_D_slate) <- colnames(Primary_D) | |
Primary_R_slate <- lapply(colnames(Primary_R), function(col) { | |
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha | |
Empirical_ <- table(Primary_R[[col]]) | |
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"] | |
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_ | |
prop.table(posterior_alpha) | |
}) | |
names(Primary_R_slate) <- colnames(Primary_R) | |
slate_list <- list("Democratic" = Primary_D_slate, "Republican" = Primary_R_slate) | |
# subset data | |
indices <- which( my_data$R_Partisanship %in% c("Republican","Democrat") & | |
my_data$Office == "President" ) | |
FACTOR_MAT <- FACTOR_MAT_FULL[indices, | |
!colnames(FACTOR_MAT_FULL) %in% c("Office", | |
"Party.competition", | |
"Party.affiliation")] | |
Yobs <- Yobs_FULL[indices] | |
my_data_red <- my_data_FULL[indices,] | |
pair_id <- pair_id_FULL[indices] | |
cluster_var <- cluster_var_FULL[ indices ] | |
my_data_red$Party.affiliation_clean <- ifelse(my_data_red$Party.affiliation == "Republican Party", | |
yes = "Republican", no = ifelse(my_data_red$Party.affiliation == "Democratic Party", | |
yes = "Democrat",no = "Independent")) | |
# subset cols | |
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)] | |
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)] | |
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)] | |
incProgress(0.4, detail = "Running strategize...") | |
# Compute with strategize using a single lambda | |
Qoptimized <- strategize( | |
Y = Yobs, | |
W = FACTOR_MAT, | |
#X = X, | |
X = NULL, | |
p_list = assignmentProbList, | |
slate_list = slate_list, | |
varcov_cluster_variable = cluster_var, | |
competing_group_variable_respondent = my_data_red$R_Partisanship, | |
competing_group_variable_candidate = my_data_red$Party.affiliation_clean, | |
competing_group_competition_variable_candidate = my_data_red$Party.competition, | |
pair_id = pair_id, | |
respondent_id = my_data_red$respondentIndex, | |
respondent_task_id = my_data_red$task, | |
profile_order = my_data_red$profile, | |
lambda = my_lambda, | |
diff = TRUE, | |
force_gaussian = FALSE, | |
adversarial = TRUE, | |
nFolds_glm = 3L, | |
K = 1L, | |
nMonte_adversarial = 100L, | |
nSGD = params$nSGD, | |
penalty_type = params$penalty_type, | |
use_optax = params$use_optax, | |
compute_se = params$compute_se, | |
conf_level = params$conf_level, | |
conda_env = params$conda_env, | |
conda_env_required = params$conda_env_required | |
) | |
# Identify Democrat vs Republican based on "Pro-life" stance | |
prolife_probs <- c(Qoptimized$pi_star_point$k1$Position.on.abortion["Pro-life"], | |
Qoptimized$pi_star_point$k2$Position.on.abortion["Pro-life"]) | |
which_repub <- which.max(prolife_probs) | |
if (which_repub == 1) { | |
# Swap | |
Qoptimized$pi_star_point <- list(k1 = Qoptimized$pi_star_point$k2, k2 = Qoptimized$pi_star_point$k1) | |
Qoptimized$pi_star_se <- list(k1 = Qoptimized$pi_star_se$k2, k2 = Qoptimized$pi_star_se$k1) | |
} | |
} | |
incProgress(0.8, detail = "Finalizing results...") | |
return(Qoptimized) | |
}) | |
}) | |
# Render strategy plot | |
output$strategy_plot <- renderPlot({ | |
req(result()) | |
factor_name <- input$factor | |
pi_star_list <- result()$pi_star_point | |
pi_star_se_list <- result()$pi_star_se | |
plot_factor(pi_star_list, pi_star_se_list, factor_name) | |
}) | |
# Render Q value | |
output$q_value <- renderText({ | |
req(result()) | |
q_point <- result()$Q_point_mEst | |
q_se <- result()$Q_se_mEst | |
paste("Estimated Q Value: ", sprintf("%.3f ± %.3f", q_point, 1.96 * q_se)) | |
}) | |
} | |
# Run the app | |
shinyApp(ui, server) | |