Spaces:
Runtime error
Runtime error
File size: 1,644 Bytes
404e97e 53614ce 404e97e 2b471b1 404e97e 2b471b1 53614ce 2b471b1 404e97e 2b471b1 53614ce 404e97e 53614ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from gradio.outputs import Label
from icevision.all import *
from icevision.models.checkpoint import *
import PIL
import gradio as gr
import os
# Load model
checkpoint_path = "model_checkpoint.pth"
checkpoint_and_model = model_from_checkpoint(checkpoint_path)
model = checkpoint_and_model["model"]
model_type = checkpoint_and_model["model_type"]
class_map = checkpoint_and_model["class_map"]
# Transforms
img_size = checkpoint_and_model["img_size"]
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()])
# Populate examples in Gradio interface
examples = [
['./1.jpg'],
['./2.jpg'],
['./3.jpg']
]
def show_preds(input_image):
img = PIL.Image.fromarray(input_image, "RGB")
pred_dict = model_type.end2end_detect(img, valid_tfms, model,
class_map=class_map,
detection_threshold=0.5,
display_label=True,
display_bbox=True,
return_img=True,
font_size=16,
label_color="#FF59D6")
return pred_dict["img"]
gr_interface = gr.Interface(
fn=show_preds,
inputs=["image"],
outputs=[gr.outputs.Image(type="pil", label="VFNet Inference")],
title="Rice Disease Detector",
description="A VFNet model that detects common diseases on rice leaf. Upload an image or click an example image below to use.",
examples=examples,
)
gr_interface.launch(inline=False, share=False, debug=True) |