|
# Finetuning with Encouraging Loss (EL) |
|
Below we provide methods for finetuning with label smoothed encouraging loss proposed in [_Well-classified Examples are Underestimated in Classification with Deep Neural Networks_](https://arxiv.org/pdf/2110.06537.pdf) on different downstream tasks. |
|
The implementation is in [label_smoothed_encouraging_loss.py](criterions/label_smoothed_encouraging_loss.py). |
|
You can set the `--criterion` to `adjust_label_smoothed_encouraging_loss` to use it. This criterion has a hyper-parameter `--log-end`. |
|
`--log-end < 1` results in a approximated and conservative version of the full encouraging loss. |
|
A high log_end will more strongly weaken the gradient vanishing, enhance the modeling of the data, and increase the growth rate of the margin, but it will also bring a larger gradient norm, which will bring challenges to the existing optimization system. |
|
We recommend higher log_end for cases with higher performance, and 0.75 or 0.5 as your first try. |
|
## Image Captioning |
|
We provide procedures for image captioning with EL below. The preprocessing is identical to default setting. |
|
|
|
<details> |
|
<summary><b>Finetuning</b></summary> |
|
<p> |
|
We propose two scripts for stage1. </b> |
|
</p> |
|
<pre> |
|
cd run_scripts/caption |
|
nohup sh train_caption_stage1_el.sh > train_stage1_el.out & # stage 1, train with encouraging loss, expected cider 1.403 |
|
nohup sh train_caption_stage1_el_db.sh > train_stage1_el.out & # stage 1, train with encouraging loss, and drop best examples, expected cider 1.404 |
|
</pre> |
|
</details> |
|
|
|
## Referring Expression Comprehension |
|
We provide procedures for image captioning with EL below. The preprocessing is identical to default setting. |
|
<details> |
|
<summary><b>Finetuning</b></summary> |
|
<pre> |
|
cd run_scripts/refcoco |
|
nohup sh train_refcoco_el.sh > train_refcoco_el.out & # finetune for refcoco |
|
nohup sh train_refcocoplus_el.sh > train_refcocoplus_el.out & # finetune for refcoco+ |
|
nohup sh train_refcocog_el.sh > train_refcocog_el.out & # finetune for refcocog |
|
</pre> |
|
</details> |
|
Evaluation is also the same as the default setting. |
|
|