richardaecn's picture
Upload 105 files
e19aac6 verified
raw
history blame
5.93 kB
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
PAD_TOKEN_ID = 0
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModelForCausalLM
from transformers.models.gemma import GemmaConfig, GemmaModel, GemmaForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from llava.constants import IGNORE_INDEX
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
# import time
class LlavaGemmaConfig(GemmaConfig):
model_type = "llava_gemma"
class LlavaGemmaModel(GemmaModel, LlavaMetaModel):
config_class = LlavaGemmaConfig
def __init__(self, config: GemmaConfig):
super(LlavaGemmaModel, self).__init__(config)
class LlavaGemmaForCausalLM(GemmaForCausalLM, LlavaMetaForCausalLM):
config_class = LlavaGemmaConfig
def __init__(self, config):
super(LlavaGemmaForCausalLM, self).__init__(config)
self.model = LlavaGemmaModel(config)
self.pretraining_tp = 1
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def get_lm_head(self):
return self.lm_head
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images
)
# TODO (kentang-mit@): fuse this function into the previous one.
# current design makes unit-test easier.
if self.training:
(
_,
new_position_ids,
new_attention_mask,
_,
new_inputs_embeds,
new_labels,
sorted_seqlens_in_batch
) = self.repack_multimodal_data(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
)
new_input_ids = None
past_key_values = None
new_cache_position = None
else:
new_attention_mask = attention_mask
new_position_ids = position_ids
new_inputs_embeds = inputs_embeds
new_labels = labels
if attention_mask is not None:
sorted_seqlens_in_batch = attention_mask.sum(-1).int()
else:
sorted_seqlens_in_batch = None
new_input_ids = input_ids
# kentang-mit@: This only works for batch=1 currently
# model.generate of gemma does not correctly handle decoding stage currently
# need to manually adjust decoding stage input = 1 token
if past_key_values is not None:
if new_inputs_embeds is not None:
new_inputs_embeds = new_inputs_embeds[:, [-1]]
# kentang-mit@: seems to be a problem unique to gemma
if new_position_ids is not None:
new_position_ids = new_position_ids[:, [-1]]
new_cache_position = new_position_ids[0]
outputs = super().forward(
input_ids=new_input_ids,
attention_mask=new_attention_mask,
position_ids=new_position_ids,
past_key_values=past_key_values,
inputs_embeds=new_inputs_embeds,
labels=new_labels,
use_cache=use_cache,
cache_position=new_cache_position,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
seqlens_in_batch=sorted_seqlens_in_batch,
)
return outputs
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
_inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
_inputs['images'] = images
return _inputs
AutoConfig.register("llava_gemma", LlavaGemmaConfig)
AutoModelForCausalLM.register(LlavaGemmaConfig, LlavaGemmaForCausalLM)