Spaces:
Running
Running
File size: 9,259 Bytes
27818c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import streamlit as st
import plotly.graph_objects as go
from streamlit_extras.badges import badge
import sys
import os
# Add the root directory to the path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Import helper functions
from utils.helpers import display_asset_or_placeholder, display_iframe_or_link
# Set page configuration
st.set_page_config(
page_title="Black Bee Drones | CV Journey",
page_icon="assets/black_bee.png",
layout="wide",
initial_sidebar_state="expanded",
)
# Title and introduction
st.header("🐝 Black Bee Drones - Autonomous Missions")
st.markdown(
"""
### First Autonomous Drone Team in Latin America
I joined the Black Bee Drones team in 2023 as a software member and continue to this day. The team, based at UNIFEI,
focuses on indoor and outdoor autonomous mission competitions, and we build our own drones from the ground up.
**Key Focus Areas:**
- Autonomous indoor/outdoor missions
- Custom drone building and integration
- Software development for autonomous flight
- Computer vision algorithms for navigation and object detection
**Main Competition:** International Micro Air Vehicles (IMAV) Conference and Competition
**Notable Achievement:** 3rd place in IMAV 2023 Indoor competition with a special award for being
the only team to perform the flight completely autonomously.
"""
)
# Create columns for team structure
st.subheader("Team Structure")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown("#### Hardware Team")
st.markdown(
"""
- Controller boards (PixHawk)
- Onboard computers (Raspberry Pi 4)
- Cameras (RaspCam, Oak-D)
- Positioning systems (GPS, LiDAR)
"""
)
with col2:
st.markdown("#### Software Team")
st.markdown(
"""
- Computer Vision algorithms
- Mapping & localization
- Position estimation
- Autonomous control
"""
)
with col3:
st.markdown("#### Mechanics Team")
st.markdown(
"""
- Frame design
- 3D printing
- Propulsion systems
- Component arrangement
"""
)
with col4:
st.markdown("#### Management Team")
st.markdown(
"""
- Competition strategy
- Documentation
- Team organization
- Resource allocation
"""
)
st.markdown("---")
# Technologies section
st.subheader("Core Technologies & Concepts")
tech_tab1, tech_tab2, tech_tab3 = st.tabs(
["Software Stack", "CV Techniques", "Hardware Components"]
)
with tech_tab1:
col1, col2 = st.columns(2)
with col1:
st.markdown(
"""
#### Main Software Tools
- **OpenCV:** Image processing and computer vision
- **ROS (Robot Operating System):** Distributed computing for robotics
- **TensorFlow/PyTorch:** Deep learning frameworks
- **Docker:** Containerization for deployment
- **MAVLink/MAVROS:** Drone communication protocols
"""
)
with col2:
st.markdown(
"""
#### Programming Languages
- **Python:** Main language for CV and high-level control
- **C++:** Performance-critical components and ROS nodes
"""
)
with tech_tab2:
st.markdown(
"""
#### Computer Vision & AI Techniques
- **Basic Image Processing:** Filters, morphological operations, thresholding
- **Feature Detection:** Corners, edges, and contours
- **Marker Detection:** ArUco markers for localization
- **Object Detection:** Custom models for mission-specific objects
- **Line Following:** Color segmentation and path estimation
- **Hand/Face Detection:** Using MediaPipe for gesture control
- **Visual Odometry:** For position estimation in GPS-denied environments
"""
)
with tech_tab3:
col1, col2 = st.columns(2)
with col1:
st.markdown(
"""
#### Control & Computing
- **PixHawk:** Flight controller board
- **Raspberry Pi 4:** Onboard computer
- **ESCs & Motors:** Propulsion system
- **Battery:** Power source
"""
)
with col2:
st.markdown(
"""
#### Sensors & Perception
- **RaspCam/Oak-D:** Cameras for visual perception
- **GPS:** Outdoor positioning (when available)
- **LiDAR:** Distance sensing and mapping
- **RealSense T265:** Visual-inertial odometry
- **PX4 Flow:** Optical flow sensor for position holding
"""
)
st.markdown("---")
# OpenCV Demo section
st.subheader("Demo: Real-time OpenCV Operations")
st.markdown(
"""
Basic image processing is fundamental to drone perception. This demo showcases real-time:
- Various image filters and transformations
- ArUco marker detection (used for drone localization)
- Hand and face detection using MediaPipe
"""
)
display_iframe_or_link("https://samuellimabraz-opencv-gui.hf.space", height=800)
st.caption(
"Link to Hugging Face Space: [OpenCV GUI Demo](https://samuellimabraz-opencv-gui.hf.space)"
)
st.markdown("---")
# Line Following Challenge
st.subheader("IMAV 2023 Indoor Mission: Line Following Challenge")
col1, col2 = st.columns(2)
with col1:
st.markdown(
"""
### The Challenge
The [IMAV 2023 Indoor](https://2023.imavs.org/index.php/indoor-competition/) Mission required drones to:
1. Navigate using ArUco markers for initial positioning
2. Follow a colored line on the floor to reach a deposit location
3. Deliver a block autonomously
This mission tested precise control, vision-based navigation, and autonomous decision-making.
"""
)
display_asset_or_placeholder(
"imav_mission_diagram.jpg",
caption="Diagram of the IMAV 2023 Indoor Mission",
use_column_width=True,
)
with col2:
st.markdown(
"""
### Line Following Algorithm
I developed a robust line-following algorithm consisting of:
1. **Color Filtering:** Isolate the colored line using HSV thresholding in OpenCV
2. **Line Detection & Orientation:** Estimate the line's position and direction
3. **PID Controller:** Adjust the drone's heading based on the line's position relative to the center
The algorithm was robust to varying lighting conditions and line widths, which was crucial for the competition environment.
"""
)
# Create a simple PID visualization
st.markdown("#### PID Control Visualization")
fig = go.Figure()
# Create data for the PID controller visualization
import numpy as np
# Time points
t = np.linspace(0, 10, 100)
# Target (setpoint)
setpoint = np.ones_like(t) * 0
# PID response for roll (center line error)
center_error = np.sin(t) * np.exp(-0.3 * t)
roll_output = -center_error * 0.8
# PID response for yaw (angle error)
angle_error = np.cos(t) * np.exp(-0.4 * t)
yaw_output = -angle_error * 0.7
# Add traces
fig.add_trace(
go.Scatter(
x=t,
y=setpoint,
mode="lines",
name="Setpoint",
line=dict(color="green", width=2, dash="dash"),
)
)
fig.add_trace(
go.Scatter(
x=t,
y=center_error,
mode="lines",
name="Center Line Error",
line=dict(color="red", width=2),
)
)
fig.add_trace(
go.Scatter(
x=t,
y=angle_error,
mode="lines",
name="Angle Error",
line=dict(color="orange", width=2),
)
)
fig.add_trace(
go.Scatter(
x=t,
y=roll_output,
mode="lines",
name="Roll Correction",
line=dict(color="blue", width=2),
)
)
fig.add_trace(
go.Scatter(
x=t,
y=yaw_output,
mode="lines",
name="Yaw Correction",
line=dict(color="purple", width=2),
)
)
# Update layout
fig.update_layout(
title="PID Controllers for Line Following",
xaxis_title="Time",
yaxis_title="Error / Correction",
legend=dict(y=0.99, x=0.01, orientation="h"),
margin=dict(l=0, r=0, t=40, b=0),
height=300,
)
st.plotly_chart(fig, use_container_width=True)
# Demo iFrame
st.markdown("### Line Following Simulation Demo")
display_iframe_or_link("https://samuellimabraz-line-follow-pid.hf.space", height=1200)
st.caption(
"Link to Hugging Face Space: [Line Follow PID Demo](https://samuellimabraz-line-follow-pid.hf.space)"
)
# Video demo
st.markdown("### Real Flight Footage (IMAV 2023)")
display_asset_or_placeholder(
"drone_line_following_video.mp4",
asset_type="video",
caption="Black Bee Drone executing the line following task during IMAV 2023",
)
st.markdown("---")
st.markdown(
"""
### Team Recognition
This work was made possible by the incredible Black Bee Drones team at UNIFEI. Special thanks to all members
who contributed their expertise in hardware, software, mechanics, and management.
"""
)
st.markdown(
"[Black Bee Drones](https://www.linkedin.com/company/blackbeedrones/posts/?feedView=all)"
)
|