Spaces:
Running
Running
File size: 19,724 Bytes
27818c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
import streamlit as st
from streamlit_mermaid import st_mermaid
from streamlit_extras.badges import badge
# Set page configuration
st.set_page_config(
page_title="CafeDL Project | CV Journey",
page_icon="☕",
layout="wide",
initial_sidebar_state="expanded",
)
# Title and introduction
st.header("☕ CafeDL - A Java Deep Learning Library")
st.markdown(
"""
### Building Neural Networks from Scratch in Java
CafeDL is a deep learning framework I developed from scratch during my Software Design undergraduate course.
Inspired by Keras' architecture and API, it's an educational exploration of neural network fundamentals,
implemented entirely in Java.
This project combines software engineering principles with machine learning concepts, demonstrating how
modern deep learning frameworks are designed under the hood.
"""
)
st.markdown(
"[GitHub Repository: samuellimabraz/cafedl](https://github.com/samuellimabraz/cafedl)"
)
# Project motivation
st.markdown("---")
st.subheader("Project Motivation")
st.markdown(
"""
### Why Build a DL Framework from Scratch?
Most deep learning courses teach how to use existing frameworks like TensorFlow or PyTorch.
While valuable for practical applications, this approach often leaves engineers with knowledge gaps
in the fundamental concepts that power these frameworks.
**By building CafeDL, I aimed to:**
- **Deepen Understanding:** Learn the mathematical foundations and computational challenges of neural networks
- **Apply Design Patterns:** Explore software architecture patterns in a complex domain
- **Bridge Engineering & ML:** Connect software engineering principles with machine learning concepts
- **Challenge Myself:** Implement gradient descent, backpropagation, convolutional operations, and more without relying on existing libraries
"""
)
# Technology Stack
st.markdown("---")
st.subheader("Technology Stack")
col1, col2 = st.columns(2)
with col1:
st.markdown(
"""
### Core Technologies
- **Java:** The entire library is implemented in pure Java
- **ND4J (N-Dimensional Arrays for Java):** Used for tensor and matrix manipulation
- **MongoDB & Morphia:** For Object Document Mapping (ODM) and persisting trained models
- **JavaFX:** For the QuickDraw game interface
ND4J provides efficient data structures similar to NumPy arrays, enabling vectorized operations
while still implementing my own mathematical operations for learning purposes.
"""
)
with col2:
st.markdown(
"""
### Design Philosophy
- **Educational Focus:** Prioritizes readability and understanding over raw performance
- **Object-Oriented Design:** Heavy use of design patterns and clean architecture
- **API Familiarity:** Interface inspired by Keras for intuitive model building
- **Modularity:** Components are designed to be mixed and matched
- **Extensibility:** Easy to add new layers, optimizers, and activation functions
"""
)
# Key features
st.markdown("---")
st.subheader("Key Features of CafeDL")
col1, col2 = st.columns(2)
with col1:
st.markdown(
"""
### Neural Network Components
- **Layers:**
- Dense (Fully Connected)
- Convolutional 2D
- Max Pooling 2D
- Zero Padding 2D
- Flattening
- Dropout
- **Activation Functions:**
- ReLU
- Leaky ReLU
- SiLU (Sigmoid Linear Unit)
- Sigmoid
- Tanh
- Softmax
- Linear
- **Loss Functions:**
- Mean Squared Error (MSE)
- Binary Cross-Entropy
- Categorical Cross-Entropy
- Softmax Cross-Entropy
"""
)
with col2:
st.markdown(
"""
### Training Components
- **Optimizers:**
- SGD (Stochastic Gradient Descent)
- SGD with Momentum
- SGD with Nesterov Momentum
- Regularized SGD
- Adam
- RMSProp
- AdaGrad
- AdaDelta
- **Learning Rate Strategies:**
- Linear Decay
- Exponential Decay
- **Metrics:**
- Accuracy
- Precision
- Recall
- F1 Score
- MSE, RMSE, MAE
- R²
"""
)
# Data Processing Features
st.markdown("---")
st.subheader("Data Processing Features")
st.markdown(
"""
### Comprehensive Data Pipeline
- **Data Loading:** Utility functions to load and preprocess training/testing data
- **Preprocessing:** Tools for data normalization and transformation
- StandardScaler
- MinMaxScaler
- One-hot encoding
- **Visualization:** Functions to plot model predictions and training performance
- **Image Utilities:** Convert between array and image formats
"""
)
# Example usage code
st.markdown("---")
# Add a more complete model example from the README
st.markdown("### Example: Building & Training a CNN Model")
st.code(
"""
DataLoader dataLoader = new DataLoader(root + "/npy/train/x_train250.npy", root + "/npy/train/y_train250.npy", root + "/npy/test/x_test250.npy", root + "/npy/test/y_test250.npy");
INDArray xTrain = dataLoader.getAllTrainImages().get(NDArrayIndex.interval(0, trainSize));
INDArray yTrain = dataLoader.getAllTrainLabels().reshape(-1, 1).get(NDArrayIndex.interval(0, trainSize));
INDArray xTest = dataLoader.getAllTestImages().get(NDArrayIndex.interval(0, testSize));
INDArray yTest = dataLoader.getAllTestLabels().reshape(-1, 1).get(NDArrayIndex.interval(0, testSize));
// Normalization
xTrain = xTrain.divi(255);
xTest = xTest.divi(255);
// Reshape
xTrain = xTrain.reshape(xTrain.rows(), 28, 28, 1);
xTest = xTest.reshape(xTest.rows(), 28, 28, 1);
NeuralNetwork model = new ModelBuilder()
.add(new Conv2D(32, 2, Arrays.asList(2, 2), "valid", Activation.create("relu"), "he"))
.add(new Conv2D(16, 1, Arrays.asList(1, 1), "valid", Activation.create("relu"), "he"))
.add(new Flatten())
.add(new Dense(178, Activation.create("relu"), "he"))
.add(new Dropout(0.4))
.add(new Dense(49, Activation.create("relu"), "he"))
.add(new Dropout(0.3))
.add(new Dense(numClasses, Activation.create("linear"), "he"))
.build();
int epochs = 20;
int batchSize = 64;
LearningRateDecayStrategy lr = new ExponentialDecayStrategy(0.01, 0.0001, epochs);
Optimizer optimizer = new RMSProp(lr);
Trainer trainer = new TrainerBuilder(model, xTrain, yTrain, xTest, yTest, new SoftmaxCrossEntropy())
.setOptimizer(optimizer)
.setBatchSize(batchSize)
.setEpochs(epochs)
.setEvalEvery(2)
.setEarlyStopping(true)
.setPatience(4)
.setMetric(new Accuracy())
.build();
trainer.fit();
""",
language="java",
)
# Application: QuickDraw Game
st.markdown("---")
st.subheader("Application: QuickDraw Game Clone")
col1, col2 = st.columns(2)
with col1:
st.markdown(
"""
### Project Demo: Real-time Drawing Recognition
As a demonstration of CafeDL's capabilities, I developed a JavaFX application inspired by Google's QuickDraw game.
**Features:**
- Real-time classification of hand-drawn sketches
- Drawing canvas with intuitive UI
- Displays model confidence for each class
- User feedback and game mechanics
- 10 different object categories for classification
- Database integration to store drawings and game sessions
**Technical Implementation:**
- **CNN Model:** Trained using CafeDL on the QuickDraw dataset
- **Game Logic:** 4 rounds per session, requiring >50% confidence for success
- **Database:** MongoDB for storing drawings and game statistics
- **MVC Architecture:** Clean separation of game components using JavaFX
"""
)
with col2:
# Placeholder for QuickDraw game video
st.video(
"assets/quickdraw_game_video.mp4",
)
# Regression Examples
st.markdown("---")
st.subheader("Regression Examples")
st.markdown(
"""
### Function Approximation Capabilities
CafeDL isn't limited to classification problems. It can also tackle regression tasks, approximating various functions:
- Linear regression
- Sine waves
- Complex 3D surfaces like Rosenbrock and Saddle functions
Example visualizations from the original project include:
"""
)
col1, col2 = st.columns(2)
col3, col4 = st.columns(2)
with col1:
st.markdown("#### Saddle Function")
st.image("assets/saddle_function2.png", use_container_width=True)
with col2:
st.markdown("#### Rosenbrock Function")
st.image("assets/rosenbrock2.png", use_container_width=True)
with col3:
st.markdown("#### Sine Function")
st.image("assets/sine.png", use_container_width=True)
with col4:
st.markdown("#### Linear Regression")
st.image("assets/linear.png", use_container_width=True)
# UML Diagrams with Mermaid
st.markdown("---")
st.subheader("CafeDL Architecture: UML Diagrams")
# Create all diagram file paths
diagram_files = {
"Full Diagram": "assets/full_diagram.md",
"Layers": "assets/layers_diagram.md",
"Activations": "assets/activations_diagram.md",
"Models": "assets/models_diagram.md",
"Optimizers": "assets/optimizers_diagram.md",
"Losses": "assets/losses_diagram.md",
"Metrics": "assets/metrics_diagram.md",
"Data": "assets/data_diagram.md",
"Database": "assets/database_diagram.md",
"Train": "assets/train_diagram.md",
}
# Function to extract Mermaid diagram text from .md files
def extract_mermaid_from_md(file_path):
try:
with open(file_path, "r") as file:
content = file.read()
# Extract the Mermaid content between the ```mermaid and ``` tags
if "```mermaid" in content and "```" in content:
start_idx = content.find("```mermaid") + len("```mermaid")
end_idx = content.rfind("```")
return content[start_idx:end_idx].strip()
return None
except Exception as e:
st.error(f"Error reading diagram file {file_path}: {e}")
return None
# Display diagrams sequentially
st.info(
"The following UML diagrams represent the architecture of the CafeDL framework, organized by namespace."
)
# For each diagram, display it sequentially
for name, file_path in diagram_files.items():
st.markdown(f"### {name}")
st.markdown(f"UML class diagram showing the {name.lower()} structure.")
mermaid_content = extract_mermaid_from_md(file_path)
if mermaid_content:
st_mermaid(mermaid_content)
else:
st.warning(f"Could not load diagram from {file_path}")
# Fallback diagrams for common namespace views
if name == "Activations":
st_mermaid(
"""
classDiagram
class IActivation {
<<interface>>
+forward(input): INDArray
+backward(gradient): INDArray
}
class Sigmoid {
+forward(input): INDArray
+backward(gradient): INDArray
}
class TanH {
+forward(input): INDArray
+backward(gradient): INDArray
}
class ReLU {
+forward(input): INDArray
+backward(gradient): INDArray
}
class LeakyReLU {
-alpha: double
+forward(input): INDArray
+backward(gradient): INDArray
}
class Linear {
+forward(input): INDArray
+backward(gradient): INDArray
}
class SiLU {
+forward(input): INDArray
+backward(gradient): INDArray
}
class Softmax {
+forward(input): INDArray
+backward(gradient): INDArray
}
IActivation <|.. Sigmoid
IActivation <|.. TanH
IActivation <|.. ReLU
IActivation <|.. LeakyReLU
IActivation <|.. Linear
IActivation <|.. SiLU
IActivation <|.. Softmax
"""
)
elif name == "Layers":
st_mermaid(
"""
classDiagram
class Layer {
<<abstract>>
#inputShape: int[]
#outputShape: int[]
+forward(input): double[][]
+backward(gradient): double[][]
+getParameters(): Map<String, double[][]>
+updateParameters(optimizer): void
}
class TrainableLayer {
<<abstract>>
#params: INDArray
#grads: INDArray
#trainable: boolean
+setup(input): void
+getParams(): INDArray
+getGrads(): INDArray
}
class Dense {
-weights: INDArray
-bias: INDArray
-activation: IActivation
+Dense(units, activation)
+forward(input): INDArray
+backward(gradient): INDArray
}
class Conv2D {
-filters: INDArray
-biases: INDArray
-kernelSize: int[]
-strides: int[]
-padding: String
-activation: IActivation
+Conv2D(filters, kernelHeight, kernelWidth, activation, padding)
+forward(input): INDArray
+backward(gradient): INDArray
}
class MaxPooling2D {
-poolSize: int[]
-strides: int[]
+MaxPooling2D(poolHeight, poolWidth, strides)
+forward(input): INDArray
+backward(gradient): INDArray
}
class Flatten {
+forward(input): INDArray
+backward(gradient): INDArray
}
class Dropout {
-rate: double
-mask: INDArray
+Dropout(rate)
+forward(input): INDArray
+backward(gradient): INDArray
}
class ZeroPadding2D {
-padding: int
+ZeroPadding2D(padding)
+forward(input): INDArray
+backward(gradient): INDArray
}
Layer <|-- TrainableLayer
TrainableLayer <|-- Dense
TrainableLayer <|-- Conv2D
Layer <|-- MaxPooling2D
Layer <|-- Flatten
Layer <|-- Dropout
Layer <|-- ZeroPadding2D
Conv2D --> ZeroPadding2D : uses
"""
)
elif name == "Optimizers":
st_mermaid(
"""
classDiagram
class Optimizer {
<<abstract>>
#learningRate: double
#neuralNetwork: NeuralNetwork
+update(): void
+updateEpoch(): void
#createAuxParams(params): List<INDArray>
#updateRule(params, grads, auxParams): void
}
class LearningRateDecayStrategy {
<<abstract>>
#decayPerEpoch: double
#learningRate: double
+updateLearningRate(): double
}
class SGD {
+SGD(learningRate)
#updateRule(params, grads, auxParams): void
}
class SGDMomentum {
-momentum: double
+SGDMomentum(learningRate, momentum)
#updateRule(params, grads, auxParams): void
}
class Adam {
-beta1: double
-beta2: double
-epsilon: double
+Adam(learningRate, beta1, beta2, epsilon)
#updateRule(params, grads, auxParams): void
}
class RMSProp {
-decayRate: double
-epsilon: double
+RMSProp(learningRate, decayRate, epsilon)
#updateRule(params, grads, auxParams): void
}
Optimizer <|-- SGD
Optimizer <|-- SGDMomentum
Optimizer <|-- Adam
Optimizer <|-- RMSProp
LearningRateDecayStrategy <|-- ExponentialDecayStrategy
LearningRateDecayStrategy <|-- LinearDecayStrategy
Optimizer o-- LearningRateDecayStrategy
"""
)
# Add a separator between diagrams
st.markdown("---")
# Technical challenges
st.markdown("---")
st.markdown(
"""
### Key Learning Outcomes
- **Deep Understanding of Neural Networks:** Gained insights into the mathematical foundations of deep learning
- **Software Design Patterns:** Applied OOP principles to a complex domain
- **Algorithm Implementation:** Translated mathematical concepts into efficient code
- **Performance Optimization:** Balanced readability with computational efficiency
- **Full Stack Development:** Combined ML models with UI and database components
- **Documentation & API Design:** Created an intuitive interface for users
"""
)
# Conclusion and future work
st.markdown("---")
st.subheader("Conclusion & Future Work")
st.markdown(
"""
### Project Impact & Next Steps
The CafeDL project successfully demonstrates how modern deep learning frameworks function internally,
while providing a practical educational tool for exploring neural network concepts.
**Future Enhancements:**
- Additional layer types (LSTM, GRU, BatchNorm)
- More optimization algorithms
- Transfer learning capabilities
- Data augmentation pipeline
- Enhanced visualization tools
- Performance optimizations
This project represents the intersection of software engineering principles and machine learning concepts,
providing a foundation for deeper exploration of both fields.
"""
)
badge(
type="github",
name="samuellimabraz/cafedl",
url="https://github.com/samuellimabraz/cafedl",
)
|