|
|
|
from typing import List, Tuple |
|
|
|
import torch |
|
from mmengine.config import ConfigDict |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
|
|
from mmdet.models.task_modules.samplers import PseudoSampler |
|
from mmdet.registry import MODELS |
|
from mmdet.structures import SampleList |
|
from mmdet.structures.bbox import bbox2roi |
|
from mmdet.utils import ConfigType, InstanceList, OptConfigType |
|
from ..utils.misc import empty_instances, unpack_gt_instances |
|
from .cascade_roi_head import CascadeRoIHead |
|
|
|
|
|
@MODELS.register_module() |
|
class SparseRoIHead(CascadeRoIHead): |
|
r"""The RoIHead for `Sparse R-CNN: End-to-End Object Detection with |
|
Learnable Proposals <https://arxiv.org/abs/2011.12450>`_ |
|
and `Instances as Queries <http://arxiv.org/abs/2105.01928>`_ |
|
|
|
Args: |
|
num_stages (int): Number of stage whole iterative process. |
|
Defaults to 6. |
|
stage_loss_weights (Tuple[float]): The loss |
|
weight of each stage. By default all stages have |
|
the same weight 1. |
|
bbox_roi_extractor (:obj:`ConfigDict` or dict): Config of box |
|
roi extractor. |
|
mask_roi_extractor (:obj:`ConfigDict` or dict): Config of mask |
|
roi extractor. |
|
bbox_head (:obj:`ConfigDict` or dict): Config of box head. |
|
mask_head (:obj:`ConfigDict` or dict): Config of mask head. |
|
train_cfg (:obj:`ConfigDict` or dict, Optional): Configuration |
|
information in train stage. Defaults to None. |
|
test_cfg (:obj:`ConfigDict` or dict, Optional): Configuration |
|
information in test stage. Defaults to None. |
|
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ |
|
dict]): Initialization config dict. Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
num_stages: int = 6, |
|
stage_loss_weights: Tuple[float] = (1, 1, 1, 1, 1, 1), |
|
proposal_feature_channel: int = 256, |
|
bbox_roi_extractor: ConfigType = dict( |
|
type='SingleRoIExtractor', |
|
roi_layer=dict( |
|
type='RoIAlign', output_size=7, sampling_ratio=2), |
|
out_channels=256, |
|
featmap_strides=[4, 8, 16, 32]), |
|
mask_roi_extractor: OptConfigType = None, |
|
bbox_head: ConfigType = dict( |
|
type='DIIHead', |
|
num_classes=80, |
|
num_fcs=2, |
|
num_heads=8, |
|
num_cls_fcs=1, |
|
num_reg_fcs=3, |
|
feedforward_channels=2048, |
|
hidden_channels=256, |
|
dropout=0.0, |
|
roi_feat_size=7, |
|
ffn_act_cfg=dict(type='ReLU', inplace=True)), |
|
mask_head: OptConfigType = None, |
|
train_cfg: OptConfigType = None, |
|
test_cfg: OptConfigType = None, |
|
init_cfg: OptConfigType = None) -> None: |
|
assert bbox_roi_extractor is not None |
|
assert bbox_head is not None |
|
assert len(stage_loss_weights) == num_stages |
|
self.num_stages = num_stages |
|
self.stage_loss_weights = stage_loss_weights |
|
self.proposal_feature_channel = proposal_feature_channel |
|
super().__init__( |
|
num_stages=num_stages, |
|
stage_loss_weights=stage_loss_weights, |
|
bbox_roi_extractor=bbox_roi_extractor, |
|
mask_roi_extractor=mask_roi_extractor, |
|
bbox_head=bbox_head, |
|
mask_head=mask_head, |
|
train_cfg=train_cfg, |
|
test_cfg=test_cfg, |
|
init_cfg=init_cfg) |
|
|
|
if train_cfg is not None: |
|
for stage in range(num_stages): |
|
assert isinstance(self.bbox_sampler[stage], PseudoSampler), \ |
|
'Sparse R-CNN and QueryInst only support `PseudoSampler`' |
|
|
|
def bbox_loss(self, stage: int, x: Tuple[Tensor], |
|
results_list: InstanceList, object_feats: Tensor, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances: InstanceList) -> dict: |
|
"""Perform forward propagation and loss calculation of the bbox head on |
|
the features of the upstream network. |
|
|
|
Args: |
|
stage (int): The current stage in iterative process. |
|
x (tuple[Tensor]): List of multi-level img features. |
|
results_list (List[:obj:`InstanceData`]) : List of region |
|
proposals. |
|
object_feats (Tensor): The object feature extracted from |
|
the previous stage. |
|
batch_img_metas (list[dict]): Meta information of each image. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes``, ``labels``, and |
|
``masks`` attributes. |
|
|
|
Returns: |
|
dict[str, Tensor]: Usually returns a dictionary with keys: |
|
|
|
- `cls_score` (Tensor): Classification scores. |
|
- `bbox_pred` (Tensor): Box energies / deltas. |
|
- `bbox_feats` (Tensor): Extract bbox RoI features. |
|
- `loss_bbox` (dict): A dictionary of bbox loss components. |
|
""" |
|
proposal_list = [res.bboxes for res in results_list] |
|
rois = bbox2roi(proposal_list) |
|
bbox_results = self._bbox_forward(stage, x, rois, object_feats, |
|
batch_img_metas) |
|
imgs_whwh = torch.cat( |
|
[res.imgs_whwh[None, ...] for res in results_list]) |
|
cls_pred_list = bbox_results['detached_cls_scores'] |
|
proposal_list = bbox_results['detached_proposals'] |
|
|
|
sampling_results = [] |
|
bbox_head = self.bbox_head[stage] |
|
for i in range(len(batch_img_metas)): |
|
pred_instances = InstanceData() |
|
|
|
pred_instances.bboxes = proposal_list[i] |
|
pred_instances.scores = cls_pred_list[i] |
|
pred_instances.priors = proposal_list[i] |
|
|
|
assign_result = self.bbox_assigner[stage].assign( |
|
pred_instances=pred_instances, |
|
gt_instances=batch_gt_instances[i], |
|
gt_instances_ignore=None, |
|
img_meta=batch_img_metas[i]) |
|
|
|
sampling_result = self.bbox_sampler[stage].sample( |
|
assign_result, pred_instances, batch_gt_instances[i]) |
|
sampling_results.append(sampling_result) |
|
|
|
bbox_results.update(sampling_results=sampling_results) |
|
|
|
cls_score = bbox_results['cls_score'] |
|
decoded_bboxes = bbox_results['decoded_bboxes'] |
|
cls_score = cls_score.view(-1, cls_score.size(-1)) |
|
decoded_bboxes = decoded_bboxes.view(-1, 4) |
|
bbox_loss_and_target = bbox_head.loss_and_target( |
|
cls_score, |
|
decoded_bboxes, |
|
sampling_results, |
|
self.train_cfg[stage], |
|
imgs_whwh=imgs_whwh, |
|
concat=True) |
|
bbox_results.update(bbox_loss_and_target) |
|
|
|
|
|
proposal_list = [] |
|
for idx in range(len(batch_img_metas)): |
|
results = InstanceData() |
|
results.imgs_whwh = results_list[idx].imgs_whwh |
|
results.bboxes = bbox_results['detached_proposals'][idx] |
|
proposal_list.append(results) |
|
bbox_results.update(results_list=proposal_list) |
|
return bbox_results |
|
|
|
def _bbox_forward(self, stage: int, x: Tuple[Tensor], rois: Tensor, |
|
object_feats: Tensor, |
|
batch_img_metas: List[dict]) -> dict: |
|
"""Box head forward function used in both training and testing. Returns |
|
all regression, classification results and a intermediate feature. |
|
|
|
Args: |
|
stage (int): The current stage in iterative process. |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rois (Tensor): RoIs with the shape (n, 5) where the first |
|
column indicates batch id of each RoI. |
|
Each dimension means (img_index, x1, y1, x2, y2). |
|
object_feats (Tensor): The object feature extracted from |
|
the previous stage. |
|
batch_img_metas (list[dict]): Meta information of each image. |
|
|
|
Returns: |
|
dict[str, Tensor]: a dictionary of bbox head outputs, |
|
Containing the following results: |
|
|
|
- cls_score (Tensor): The score of each class, has |
|
shape (batch_size, num_proposals, num_classes) |
|
when use focal loss or |
|
(batch_size, num_proposals, num_classes+1) |
|
otherwise. |
|
- decoded_bboxes (Tensor): The regression results |
|
with shape (batch_size, num_proposal, 4). |
|
The last dimension 4 represents |
|
[tl_x, tl_y, br_x, br_y]. |
|
- object_feats (Tensor): The object feature extracted |
|
from current stage |
|
- detached_cls_scores (list[Tensor]): The detached |
|
classification results, length is batch_size, and |
|
each tensor has shape (num_proposal, num_classes). |
|
- detached_proposals (list[tensor]): The detached |
|
regression results, length is batch_size, and each |
|
tensor has shape (num_proposal, 4). The last |
|
dimension 4 represents [tl_x, tl_y, br_x, br_y]. |
|
""" |
|
num_imgs = len(batch_img_metas) |
|
bbox_roi_extractor = self.bbox_roi_extractor[stage] |
|
bbox_head = self.bbox_head[stage] |
|
bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs], |
|
rois) |
|
cls_score, bbox_pred, object_feats, attn_feats = bbox_head( |
|
bbox_feats, object_feats) |
|
|
|
fake_bbox_results = dict( |
|
rois=rois, |
|
bbox_targets=(rois.new_zeros(len(rois), dtype=torch.long), None), |
|
bbox_pred=bbox_pred.view(-1, bbox_pred.size(-1)), |
|
cls_score=cls_score.view(-1, cls_score.size(-1))) |
|
fake_sampling_results = [ |
|
InstanceData(pos_is_gt=rois.new_zeros(object_feats.size(1))) |
|
for _ in range(len(batch_img_metas)) |
|
] |
|
|
|
results_list = bbox_head.refine_bboxes( |
|
sampling_results=fake_sampling_results, |
|
bbox_results=fake_bbox_results, |
|
batch_img_metas=batch_img_metas) |
|
proposal_list = [res.bboxes for res in results_list] |
|
bbox_results = dict( |
|
cls_score=cls_score, |
|
decoded_bboxes=torch.cat(proposal_list), |
|
object_feats=object_feats, |
|
attn_feats=attn_feats, |
|
|
|
detached_cls_scores=[ |
|
cls_score[i].detach() for i in range(num_imgs) |
|
], |
|
detached_proposals=[item.detach() for item in proposal_list]) |
|
|
|
return bbox_results |
|
|
|
def _mask_forward(self, stage: int, x: Tuple[Tensor], rois: Tensor, |
|
attn_feats) -> dict: |
|
"""Mask head forward function used in both training and testing. |
|
|
|
Args: |
|
stage (int): The current stage in Cascade RoI Head. |
|
x (tuple[Tensor]): Tuple of multi-level img features. |
|
rois (Tensor): RoIs with the shape (n, 5) where the first |
|
column indicates batch id of each RoI. |
|
attn_feats (Tensot): Intermediate feature get from the last |
|
diihead, has shape |
|
(batch_size*num_proposals, feature_dimensions) |
|
|
|
Returns: |
|
dict: Usually returns a dictionary with keys: |
|
|
|
- `mask_preds` (Tensor): Mask prediction. |
|
""" |
|
mask_roi_extractor = self.mask_roi_extractor[stage] |
|
mask_head = self.mask_head[stage] |
|
mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], |
|
rois) |
|
|
|
mask_preds = mask_head(mask_feats, attn_feats) |
|
|
|
mask_results = dict(mask_preds=mask_preds) |
|
return mask_results |
|
|
|
def mask_loss(self, stage: int, x: Tuple[Tensor], bbox_results: dict, |
|
batch_gt_instances: InstanceList, |
|
rcnn_train_cfg: ConfigDict) -> dict: |
|
"""Run forward function and calculate loss for mask head in training. |
|
|
|
Args: |
|
stage (int): The current stage in Cascade RoI Head. |
|
x (tuple[Tensor]): Tuple of multi-level img features. |
|
bbox_results (dict): Results obtained from `bbox_loss`. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes``, ``labels``, and |
|
``masks`` attributes. |
|
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN. |
|
|
|
Returns: |
|
dict: Usually returns a dictionary with keys: |
|
|
|
- `mask_preds` (Tensor): Mask prediction. |
|
- `loss_mask` (dict): A dictionary of mask loss components. |
|
""" |
|
attn_feats = bbox_results['attn_feats'] |
|
sampling_results = bbox_results['sampling_results'] |
|
|
|
pos_rois = bbox2roi([res.pos_priors for res in sampling_results]) |
|
|
|
attn_feats = torch.cat([ |
|
feats[res.pos_inds] |
|
for (feats, res) in zip(attn_feats, sampling_results) |
|
]) |
|
mask_results = self._mask_forward(stage, x, pos_rois, attn_feats) |
|
|
|
mask_loss_and_target = self.mask_head[stage].loss_and_target( |
|
mask_preds=mask_results['mask_preds'], |
|
sampling_results=sampling_results, |
|
batch_gt_instances=batch_gt_instances, |
|
rcnn_train_cfg=rcnn_train_cfg) |
|
mask_results.update(mask_loss_and_target) |
|
|
|
return mask_results |
|
|
|
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, |
|
batch_data_samples: SampleList) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
roi on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rpn_results_list (List[:obj:`InstanceData`]): List of region |
|
proposals. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
dict: a dictionary of loss components of all stage. |
|
""" |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ |
|
= outputs |
|
|
|
object_feats = torch.cat( |
|
[res.pop('features')[None, ...] for res in rpn_results_list]) |
|
results_list = rpn_results_list |
|
losses = {} |
|
for stage in range(self.num_stages): |
|
stage_loss_weight = self.stage_loss_weights[stage] |
|
|
|
|
|
bbox_results = self.bbox_loss( |
|
stage=stage, |
|
x=x, |
|
object_feats=object_feats, |
|
results_list=results_list, |
|
batch_img_metas=batch_img_metas, |
|
batch_gt_instances=batch_gt_instances) |
|
|
|
for name, value in bbox_results['loss_bbox'].items(): |
|
losses[f's{stage}.{name}'] = ( |
|
value * stage_loss_weight if 'loss' in name else value) |
|
|
|
if self.with_mask: |
|
mask_results = self.mask_loss( |
|
stage=stage, |
|
x=x, |
|
bbox_results=bbox_results, |
|
batch_gt_instances=batch_gt_instances, |
|
rcnn_train_cfg=self.train_cfg[stage]) |
|
|
|
for name, value in mask_results['loss_mask'].items(): |
|
losses[f's{stage}.{name}'] = ( |
|
value * stage_loss_weight if 'loss' in name else value) |
|
|
|
object_feats = bbox_results['object_feats'] |
|
results_list = bbox_results['results_list'] |
|
return losses |
|
|
|
def predict_bbox(self, |
|
x: Tuple[Tensor], |
|
batch_img_metas: List[dict], |
|
rpn_results_list: InstanceList, |
|
rcnn_test_cfg: ConfigType, |
|
rescale: bool = False) -> InstanceList: |
|
"""Perform forward propagation of the bbox head and predict detection |
|
results on the features of the upstream network. |
|
|
|
Args: |
|
x(tuple[Tensor]): Feature maps of all scale level. |
|
batch_img_metas (list[dict]): List of image information. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
proposal_list = [res.bboxes for res in rpn_results_list] |
|
object_feats = torch.cat( |
|
[res.pop('features')[None, ...] for res in rpn_results_list]) |
|
if all([proposal.shape[0] == 0 for proposal in proposal_list]): |
|
|
|
return empty_instances( |
|
batch_img_metas, x[0].device, task_type='bbox') |
|
|
|
for stage in range(self.num_stages): |
|
rois = bbox2roi(proposal_list) |
|
bbox_results = self._bbox_forward(stage, x, rois, object_feats, |
|
batch_img_metas) |
|
object_feats = bbox_results['object_feats'] |
|
cls_score = bbox_results['cls_score'] |
|
proposal_list = bbox_results['detached_proposals'] |
|
|
|
num_classes = self.bbox_head[-1].num_classes |
|
|
|
if self.bbox_head[-1].loss_cls.use_sigmoid: |
|
cls_score = cls_score.sigmoid() |
|
else: |
|
cls_score = cls_score.softmax(-1)[..., :-1] |
|
|
|
topk_inds_list = [] |
|
results_list = [] |
|
for img_id in range(len(batch_img_metas)): |
|
cls_score_per_img = cls_score[img_id] |
|
scores_per_img, topk_inds = cls_score_per_img.flatten(0, 1).topk( |
|
self.test_cfg.max_per_img, sorted=False) |
|
labels_per_img = topk_inds % num_classes |
|
bboxes_per_img = proposal_list[img_id][topk_inds // num_classes] |
|
topk_inds_list.append(topk_inds) |
|
if rescale and bboxes_per_img.size(0) > 0: |
|
assert batch_img_metas[img_id].get('scale_factor') is not None |
|
scale_factor = bboxes_per_img.new_tensor( |
|
batch_img_metas[img_id]['scale_factor']).repeat((1, 2)) |
|
bboxes_per_img = ( |
|
bboxes_per_img.view(bboxes_per_img.size(0), -1, 4) / |
|
scale_factor).view(bboxes_per_img.size()[0], -1) |
|
|
|
results = InstanceData() |
|
results.bboxes = bboxes_per_img |
|
results.scores = scores_per_img |
|
results.labels = labels_per_img |
|
results_list.append(results) |
|
if self.with_mask: |
|
for img_id in range(len(batch_img_metas)): |
|
|
|
|
|
proposals = bbox_results['detached_proposals'][img_id] |
|
topk_inds = topk_inds_list[img_id] |
|
attn_feats = bbox_results['attn_feats'][img_id] |
|
|
|
results_list[img_id].proposals = proposals |
|
results_list[img_id].topk_inds = topk_inds |
|
results_list[img_id].attn_feats = attn_feats |
|
return results_list |
|
|
|
def predict_mask(self, |
|
x: Tuple[Tensor], |
|
batch_img_metas: List[dict], |
|
results_list: InstanceList, |
|
rescale: bool = False) -> InstanceList: |
|
"""Perform forward propagation of the mask head and predict detection |
|
results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Feature maps of all scale level. |
|
batch_img_metas (list[dict]): List of image information. |
|
results_list (list[:obj:`InstanceData`]): Detection results of |
|
each image. Each item usually contains following keys: |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
- proposal (Tensor): Bboxes predicted from bbox_head, |
|
has a shape (num_instances, 4). |
|
- topk_inds (Tensor): Topk indices of each image, has |
|
shape (num_instances, ) |
|
- attn_feats (Tensor): Intermediate feature get from the last |
|
diihead, has shape (num_instances, feature_dimensions) |
|
|
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
- masks (Tensor): Has a shape (num_instances, H, W). |
|
""" |
|
proposal_list = [res.pop('proposals') for res in results_list] |
|
topk_inds_list = [res.pop('topk_inds') for res in results_list] |
|
attn_feats = torch.cat( |
|
[res.pop('attn_feats')[None, ...] for res in results_list]) |
|
|
|
rois = bbox2roi(proposal_list) |
|
|
|
if rois.shape[0] == 0: |
|
results_list = empty_instances( |
|
batch_img_metas, |
|
rois.device, |
|
task_type='mask', |
|
instance_results=results_list, |
|
mask_thr_binary=self.test_cfg.mask_thr_binary) |
|
return results_list |
|
|
|
last_stage = self.num_stages - 1 |
|
mask_results = self._mask_forward(last_stage, x, rois, attn_feats) |
|
|
|
num_imgs = len(batch_img_metas) |
|
mask_results['mask_preds'] = mask_results['mask_preds'].reshape( |
|
num_imgs, -1, *mask_results['mask_preds'].size()[1:]) |
|
num_classes = self.bbox_head[-1].num_classes |
|
|
|
mask_preds = [] |
|
for img_id in range(num_imgs): |
|
topk_inds = topk_inds_list[img_id] |
|
masks_per_img = mask_results['mask_preds'][img_id].flatten( |
|
0, 1)[topk_inds] |
|
masks_per_img = masks_per_img[:, None, |
|
...].repeat(1, num_classes, 1, 1) |
|
mask_preds.append(masks_per_img) |
|
results_list = self.mask_head[-1].predict_by_feat( |
|
mask_preds, |
|
results_list, |
|
batch_img_metas, |
|
rcnn_test_cfg=self.test_cfg, |
|
rescale=rescale) |
|
|
|
return results_list |
|
|
|
|
|
def forward(self, x: Tuple[Tensor], rpn_results_list: InstanceList, |
|
batch_data_samples: SampleList) -> tuple: |
|
"""Network forward process. Usually includes backbone, neck and head |
|
forward without any post-processing. |
|
|
|
Args: |
|
x (List[Tensor]): Multi-level features that may have different |
|
resolutions. |
|
rpn_results_list (List[:obj:`InstanceData`]): List of region |
|
proposals. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns |
|
tuple: A tuple of features from ``bbox_head`` and ``mask_head`` |
|
forward. |
|
""" |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
(batch_gt_instances, batch_gt_instances_ignore, |
|
batch_img_metas) = outputs |
|
|
|
all_stage_bbox_results = [] |
|
object_feats = torch.cat( |
|
[res.pop('features')[None, ...] for res in rpn_results_list]) |
|
results_list = rpn_results_list |
|
if self.with_bbox: |
|
for stage in range(self.num_stages): |
|
bbox_results = self.bbox_loss( |
|
stage=stage, |
|
x=x, |
|
results_list=results_list, |
|
object_feats=object_feats, |
|
batch_img_metas=batch_img_metas, |
|
batch_gt_instances=batch_gt_instances) |
|
bbox_results.pop('loss_bbox') |
|
|
|
bbox_results.pop('results_list') |
|
bbox_res = bbox_results.copy() |
|
bbox_res.pop('sampling_results') |
|
all_stage_bbox_results.append((bbox_res, )) |
|
|
|
if self.with_mask: |
|
attn_feats = bbox_results['attn_feats'] |
|
sampling_results = bbox_results['sampling_results'] |
|
|
|
pos_rois = bbox2roi( |
|
[res.pos_priors for res in sampling_results]) |
|
|
|
attn_feats = torch.cat([ |
|
feats[res.pos_inds] |
|
for (feats, res) in zip(attn_feats, sampling_results) |
|
]) |
|
mask_results = self._mask_forward(stage, x, pos_rois, |
|
attn_feats) |
|
all_stage_bbox_results[-1] += (mask_results, ) |
|
return tuple(all_stage_bbox_results) |
|
|