home_page_chat / app.py
tiantian-paris's picture
Update app.py
0d1e757 verified
raw
history blame
4.45 kB
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
import numpy as np
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.web_search import DuckDuckGoSearchTool
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def calculate_risk_metrics(
returns: np.ndarray,
var_level: float = 0.95,
n_simulations: int = 10000,
bootstrap: bool = False,
random_seed: Optional[int] = None
) -> Tuple[float, float]:
"""
Calculate Value at Risk (VaR) and Expected Shortfall (ES) using the historical method, with an option for bootstrapped historical simulation.
Args:
returns: Array of daily returns. Each value represents the percentage return for a single day.
var_level: VaR level (e.g., 0.95 for 95% confidence). Defaults to 0.95.
n_simulations: Number of bootstrap simulations. Defaults to 10000.
bootstrap: If True, use bootstrapped historical simulation. Defaults to False.
random_seed: Seed for random number generation to ensure reproducibility. Defaults to None.
Returns:
Tuple[float, float]: A tuple containing the VaR and Expected Shortfall (ES) values.
"""
if random_seed is not None:
np.random.seed(random_seed)
if bootstrap:
# Perform bootstrapped historical simulation
simulated_var = np.zeros(n_simulations)
simulated_es = np.zeros(n_simulations)
for i in range(n_simulations):
# Resample returns with replacement
resampled_returns = np.random.choice(returns, size=len(returns), replace=True)
# Sort the resampled returns
sorted_returns = np.sort(resampled_returns)
# Determine the index for the VaR level
index = int((1 - var_level) * len(sorted_returns))
# Calculate VaR for this simulation
simulated_var[i] = sorted_returns[index]
# Calculate ES for this simulation (average of returns below VaR)
simulated_es[i] = np.mean(sorted_returns[:index])
# Calculate the average VaR and ES across all simulations
var_value = np.mean(simulated_var)
es_value = np.mean(simulated_es)
else:
# Use the standard historical method
sorted_returns = np.sort(returns)
index = int((1 - var_level) * len(returns))
# Calculate VaR
var_value = sorted_returns[index]
# Calculate ES (average of returns below VaR)
es_value = np.mean(sorted_returns[:index])
return var_value, es_value
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
visit_webpage = VisitWebpageTool()
web_search = DuckDuckGoSearchTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer,calculate_risk_metrics,get_current_time_in_timezone,visit_webpage,web_search], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()