YiChen_FramePack_lora_early / hv_generate_video.py
svjack's picture
Upload folder using huggingface_hub
ef46f0f verified
raw
history blame
40.9 kB
import argparse
from datetime import datetime
from pathlib import Path
import random
import sys
import os
import time
from typing import Optional, Union
import numpy as np
import torch
import torchvision
import accelerate
from diffusers.utils.torch_utils import randn_tensor
from transformers.models.llama import LlamaModel
from tqdm import tqdm
import av
from einops import rearrange
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
from hunyuan_model import vae
from hunyuan_model.text_encoder import TextEncoder
from hunyuan_model.text_encoder import PROMPT_TEMPLATE
from hunyuan_model.vae import load_vae
from hunyuan_model.models import load_transformer, get_rotary_pos_embed
from hunyuan_model.fp8_optimization import convert_fp8_linear
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
from networks import lora
try:
from lycoris.kohya import create_network_from_weights
except:
pass
from utils.model_utils import str_to_dtype
from utils.safetensors_utils import mem_eff_save_file
from dataset.image_video_dataset import load_video, glob_images, resize_image_to_bucket
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def clean_memory_on_device(device):
if device.type == "cuda":
torch.cuda.empty_cache()
elif device.type == "cpu":
pass
elif device.type == "mps": # not tested
torch.mps.empty_cache()
def synchronize_device(device: torch.device):
if device.type == "cuda":
torch.cuda.synchronize()
elif device.type == "xpu":
torch.xpu.synchronize()
elif device.type == "mps":
torch.mps.synchronize()
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
"""save videos by video tensor
copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61
Args:
videos (torch.Tensor): video tensor predicted by the model
path (str): path to save video
rescale (bool, optional): rescale the video tensor from [-1, 1] to . Defaults to False.
n_rows (int, optional): Defaults to 1.
fps (int, optional): video save fps. Defaults to 8.
"""
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = torch.clamp(x, 0, 1)
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
# # save video with av
# container = av.open(path, "w")
# stream = container.add_stream("libx264", rate=fps)
# for x in outputs:
# frame = av.VideoFrame.from_ndarray(x, format="rgb24")
# packet = stream.encode(frame)
# container.mux(packet)
# packet = stream.encode(None)
# container.mux(packet)
# container.close()
height, width, _ = outputs[0].shape
# create output container
container = av.open(path, mode="w")
# create video stream
codec = "libx264"
pixel_format = "yuv420p"
stream = container.add_stream(codec, rate=fps)
stream.width = width
stream.height = height
stream.pix_fmt = pixel_format
stream.bit_rate = 4000000 # 4Mbit/s
for frame_array in outputs:
frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24")
packets = stream.encode(frame)
for packet in packets:
container.mux(packet)
for packet in stream.encode():
container.mux(packet)
container.close()
def save_images_grid(
videos: torch.Tensor, parent_dir: str, image_name: str, rescale: bool = False, n_rows: int = 1, create_subdir=True
):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = torch.clamp(x, 0, 1)
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
if create_subdir:
output_dir = os.path.join(parent_dir, image_name)
else:
output_dir = parent_dir
os.makedirs(output_dir, exist_ok=True)
for i, x in enumerate(outputs):
image_path = os.path.join(output_dir, f"{image_name}_{i:03d}.png")
image = Image.fromarray(x)
image.save(image_path)
# region Encoding prompt
def encode_prompt(prompt: Union[str, list[str]], device: torch.device, num_videos_per_prompt: int, text_encoder: TextEncoder):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`):
prompt to be encoded
device: (`torch.device`):
torch device
num_videos_per_prompt (`int`):
number of videos that should be generated per prompt
text_encoder (TextEncoder):
text encoder to be used for encoding the prompt
"""
# LoRA and Textual Inversion are not supported in this script
# negative prompt and prompt embedding are not supported in this script
# clip_skip is not supported in this script because it is not used in the original script
data_type = "video" # video only, image is not supported
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)
with torch.no_grad():
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type, device=device)
prompt_embeds = prompt_outputs.hidden_state
attention_mask = prompt_outputs.attention_mask
if attention_mask is not None:
attention_mask = attention_mask.to(device)
bs_embed, seq_len = attention_mask.shape
attention_mask = attention_mask.repeat(1, num_videos_per_prompt)
attention_mask = attention_mask.view(bs_embed * num_videos_per_prompt, seq_len)
prompt_embeds_dtype = text_encoder.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
if prompt_embeds.ndim == 2:
bs_embed, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1)
else:
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
return prompt_embeds, attention_mask
def encode_input_prompt(prompt: Union[str, list[str]], args, device, fp8_llm=False, accelerator=None):
# constants
prompt_template_video = "dit-llm-encode-video"
prompt_template = "dit-llm-encode"
text_encoder_dtype = torch.float16
text_encoder_type = "llm"
text_len = 256
hidden_state_skip_layer = 2
apply_final_norm = False
reproduce = False
text_encoder_2_type = "clipL"
text_len_2 = 77
num_videos = 1
# if args.prompt_template_video is not None:
# crop_start = PROMPT_TEMPLATE[args.prompt_template_video].get("crop_start", 0)
# elif args.prompt_template is not None:
# crop_start = PROMPT_TEMPLATE[args.prompt_template].get("crop_start", 0)
# else:
# crop_start = 0
crop_start = PROMPT_TEMPLATE[prompt_template_video].get("crop_start", 0)
max_length = text_len + crop_start
# prompt_template
prompt_template = PROMPT_TEMPLATE[prompt_template]
# prompt_template_video
prompt_template_video = PROMPT_TEMPLATE[prompt_template_video] # if args.prompt_template_video is not None else None
# load text encoders
logger.info(f"loading text encoder: {args.text_encoder1}")
text_encoder = TextEncoder(
text_encoder_type=text_encoder_type,
max_length=max_length,
text_encoder_dtype=text_encoder_dtype,
text_encoder_path=args.text_encoder1,
tokenizer_type=text_encoder_type,
prompt_template=prompt_template,
prompt_template_video=prompt_template_video,
hidden_state_skip_layer=hidden_state_skip_layer,
apply_final_norm=apply_final_norm,
reproduce=reproduce,
)
text_encoder.eval()
if fp8_llm:
org_dtype = text_encoder.dtype
logger.info(f"Moving and casting text encoder to {device} and torch.float8_e4m3fn")
text_encoder.to(device=device, dtype=torch.float8_e4m3fn)
# prepare LLM for fp8
def prepare_fp8(llama_model: LlamaModel, target_dtype):
def forward_hook(module):
def forward(hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + module.variance_epsilon)
return module.weight.to(input_dtype) * hidden_states.to(input_dtype)
return forward
for module in llama_model.modules():
if module.__class__.__name__ in ["Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["LlamaRMSNorm"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
prepare_fp8(text_encoder.model, org_dtype)
logger.info(f"loading text encoder 2: {args.text_encoder2}")
text_encoder_2 = TextEncoder(
text_encoder_type=text_encoder_2_type,
max_length=text_len_2,
text_encoder_dtype=text_encoder_dtype,
text_encoder_path=args.text_encoder2,
tokenizer_type=text_encoder_2_type,
reproduce=reproduce,
)
text_encoder_2.eval()
# encode prompt
logger.info(f"Encoding prompt with text encoder 1")
text_encoder.to(device=device)
if fp8_llm:
with accelerator.autocast():
prompt_embeds, prompt_mask = encode_prompt(prompt, device, num_videos, text_encoder)
else:
prompt_embeds, prompt_mask = encode_prompt(prompt, device, num_videos, text_encoder)
text_encoder = None
clean_memory_on_device(device)
logger.info(f"Encoding prompt with text encoder 2")
text_encoder_2.to(device=device)
prompt_embeds_2, prompt_mask_2 = encode_prompt(prompt, device, num_videos, text_encoder_2)
prompt_embeds = prompt_embeds.to("cpu")
prompt_mask = prompt_mask.to("cpu")
prompt_embeds_2 = prompt_embeds_2.to("cpu")
prompt_mask_2 = prompt_mask_2.to("cpu")
text_encoder_2 = None
clean_memory_on_device(device)
return prompt_embeds, prompt_mask, prompt_embeds_2, prompt_mask_2
# endregion
def prepare_vae(args, device):
vae_dtype = torch.float16 if args.vae_dtype is None else str_to_dtype(args.vae_dtype)
vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device=device, vae_path=args.vae)
vae.eval()
# vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}
# set chunk_size to CausalConv3d recursively
chunk_size = args.vae_chunk_size
if chunk_size is not None:
vae.set_chunk_size_for_causal_conv_3d(chunk_size)
logger.info(f"Set chunk_size to {chunk_size} for CausalConv3d")
if args.vae_spatial_tile_sample_min_size is not None:
vae.enable_spatial_tiling(True)
vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size
vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8
# elif args.vae_tiling:
else:
vae.enable_spatial_tiling(True)
return vae, vae_dtype
def encode_to_latents(args, video, device):
vae, vae_dtype = prepare_vae(args, device)
video = video.to(device=device, dtype=vae_dtype)
video = video * 2 - 1 # 0, 1 -> -1, 1
with torch.no_grad():
latents = vae.encode(video).latent_dist.sample()
if hasattr(vae.config, "shift_factor") and vae.config.shift_factor:
latents = (latents - vae.config.shift_factor) * vae.config.scaling_factor
else:
latents = latents * vae.config.scaling_factor
return latents
def decode_latents(args, latents, device):
vae, vae_dtype = prepare_vae(args, device)
expand_temporal_dim = False
if len(latents.shape) == 4:
latents = latents.unsqueeze(2)
expand_temporal_dim = True
elif len(latents.shape) == 5:
pass
else:
raise ValueError(f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}.")
if hasattr(vae.config, "shift_factor") and vae.config.shift_factor:
latents = latents / vae.config.scaling_factor + vae.config.shift_factor
else:
latents = latents / vae.config.scaling_factor
latents = latents.to(device=device, dtype=vae_dtype)
with torch.no_grad():
image = vae.decode(latents, return_dict=False)[0]
if expand_temporal_dim:
image = image.squeeze(2)
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().float()
return image
def parse_args():
parser = argparse.ArgumentParser(description="HunyuanVideo inference script")
parser.add_argument("--dit", type=str, required=True, help="DiT checkpoint path or directory")
parser.add_argument(
"--dit_in_channels",
type=int,
default=None,
help="input channels for DiT, default is None (automatically detect). 32 for SkyReels-I2V, 16 for others",
)
parser.add_argument("--vae", type=str, required=True, help="VAE checkpoint path or directory")
parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is float16")
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory")
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory")
# LoRA
parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
parser.add_argument(
"--save_merged_model",
type=str,
default=None,
help="Save merged model to path. If specified, no inference will be performed.",
)
parser.add_argument("--exclude_single_blocks", action="store_true", help="Exclude single blocks when loading LoRA weights")
# inference
parser.add_argument("--prompt", type=str, required=True, help="prompt for generation")
parser.add_argument("--negative_prompt", type=str, default=None, help="negative prompt for generation")
parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size")
parser.add_argument("--video_length", type=int, default=129, help="video length")
parser.add_argument("--fps", type=int, default=24, help="video fps")
parser.add_argument("--infer_steps", type=int, default=50, help="number of inference steps")
parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
parser.add_argument(
"--guidance_scale",
type=float,
default=1.0,
help="Guidance scale for classifier free guidance. Default is 1.0 (means no guidance)",
)
parser.add_argument("--embedded_cfg_scale", type=float, default=6.0, help="Embeded classifier free guidance scale.")
parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference")
parser.add_argument(
"--image_path", type=str, default=None, help="path to image for image2video inference, only works for SkyReels-I2V model"
)
parser.add_argument(
"--split_uncond",
action="store_true",
help="split unconditional call for classifier free guidance, slower but less memory usage",
)
parser.add_argument("--strength", type=float, default=0.8, help="strength for video2video inference")
# Flow Matching
parser.add_argument("--flow_shift", type=float, default=7.0, help="Shift factor for flow matching schedulers.")
parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
parser.add_argument(
"--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
)
parser.add_argument(
"--attn_mode", type=str, default="torch", choices=["flash", "torch", "sageattn", "xformers", "sdpa"], help="attention mode"
)
parser.add_argument(
"--split_attn", action="store_true", help="use split attention, default is False. if True, --split_uncond becomes True"
)
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
parser.add_argument("--blocks_to_swap", type=int, default=None, help="number of blocks to swap in the model")
parser.add_argument("--img_in_txt_in_offloading", action="store_true", help="offload img_in and txt_in to cpu")
parser.add_argument(
"--output_type", type=str, default="video", choices=["video", "images", "latent", "both"], help="output type"
)
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arthimetic(RTX 4XXX+)")
parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
parser.add_argument(
"--compile_args",
nargs=4,
metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
help="Torch.compile settings",
)
args = parser.parse_args()
assert (args.latent_path is None or len(args.latent_path) == 0) or (
args.output_type == "images" or args.output_type == "video"
), "latent_path is only supported for images or video output"
# update dit_weight based on model_base if not exists
if args.fp8_fast and not args.fp8:
raise ValueError("--fp8_fast requires --fp8")
return args
def check_inputs(args):
height = args.video_size[0]
width = args.video_size[1]
video_length = args.video_length
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
return height, width, video_length
def main():
args = parse_args()
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
dit_dtype = torch.bfloat16
dit_weight_dtype = torch.float8_e4m3fn if args.fp8 else dit_dtype
logger.info(f"Using device: {device}, DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}")
original_base_names = None
if args.latent_path is not None and len(args.latent_path) > 0:
original_base_names = []
latents_list = []
seeds = []
for latent_path in args.latent_path:
original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0])
seed = 0
if os.path.splitext(latent_path)[1] != ".safetensors":
latents = torch.load(latent_path, map_location="cpu")
else:
latents = load_file(latent_path)["latent"]
with safe_open(latent_path, framework="pt") as f:
metadata = f.metadata()
if metadata is None:
metadata = {}
logger.info(f"Loaded metadata: {metadata}")
if "seeds" in metadata:
seed = int(metadata["seeds"])
seeds.append(seed)
latents_list.append(latents)
logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}")
latents = torch.stack(latents_list, dim=0)
else:
# prepare accelerator
mixed_precision = "bf16" if dit_dtype == torch.bfloat16 else "fp16"
accelerator = accelerate.Accelerator(mixed_precision=mixed_precision)
# load prompt
prompt = args.prompt # TODO load prompts from file
assert prompt is not None, "prompt is required"
# check inputs: may be height, width, video_length etc will be changed for each generation in future
height, width, video_length = check_inputs(args)
# encode prompt with LLM and Text Encoder
logger.info(f"Encoding prompt: {prompt}")
do_classifier_free_guidance = args.guidance_scale != 1.0
if do_classifier_free_guidance:
negative_prompt = args.negative_prompt
if negative_prompt is None:
logger.info("Negative prompt is not provided, using empty prompt")
negative_prompt = ""
logger.info(f"Encoding negative prompt: {negative_prompt}")
prompt = [negative_prompt, prompt]
else:
if args.negative_prompt is not None:
logger.warning("Negative prompt is provided but guidance_scale is 1.0, negative prompt will be ignored.")
prompt_embeds, prompt_mask, prompt_embeds_2, prompt_mask_2 = encode_input_prompt(
prompt, args, device, args.fp8_llm, accelerator
)
# encode latents for video2video inference
video_latents = None
if args.video_path is not None:
# v2v inference
logger.info(f"Video2Video inference: {args.video_path}")
video = load_video(args.video_path, 0, video_length, bucket_reso=(width, height)) # list of frames
if len(video) < video_length:
raise ValueError(f"Video length is less than {video_length}")
video = np.stack(video, axis=0) # F, H, W, C
video = torch.from_numpy(video).permute(3, 0, 1, 2).unsqueeze(0).float() # 1, C, F, H, W
video = video / 255.0
logger.info(f"Encoding video to latents")
video_latents = encode_to_latents(args, video, device)
video_latents = video_latents.to(device=device, dtype=dit_dtype)
clean_memory_on_device(device)
# encode latents for image2video inference
image_latents = None
if args.image_path is not None:
# i2v inference
logger.info(f"Image2Video inference: {args.image_path}")
image = Image.open(args.image_path)
image = resize_image_to_bucket(image, (width, height)) # returns a numpy array
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).unsqueeze(2).float() # 1, C, 1, H, W
image = image / 255.0
logger.info(f"Encoding image to latents")
image_latents = encode_to_latents(args, image, device) # 1, C, 1, H, W
image_latents = image_latents.to(device=device, dtype=dit_dtype)
clean_memory_on_device(device)
# load DiT model
blocks_to_swap = args.blocks_to_swap if args.blocks_to_swap else 0
loading_device = "cpu" # if blocks_to_swap > 0 else device
logger.info(f"Loading DiT model from {args.dit}")
if args.attn_mode == "sdpa":
args.attn_mode = "torch"
# if image_latents is given, the model should be I2V model, so the in_channels should be 32
dit_in_channels = args.dit_in_channels if args.dit_in_channels is not None else (32 if image_latents is not None else 16)
# if we use LoRA, weigths should be bf16 instead of fp8, because merging should be done in bf16
# the model is too large, so we load the model to cpu. in addition, the .pt file is loaded to cpu anyway
# on the fly merging will be a solution for this issue for .safetenors files (not implemented yet)
transformer = load_transformer(
args.dit, args.attn_mode, args.split_attn, loading_device, dit_dtype, in_channels=dit_in_channels
)
transformer.eval()
# load LoRA weights
if args.lora_weight is not None and len(args.lora_weight) > 0:
for i, lora_weight in enumerate(args.lora_weight):
if args.lora_multiplier is not None and len(args.lora_multiplier) > i:
lora_multiplier = args.lora_multiplier[i]
else:
lora_multiplier = 1.0
logger.info(f"Loading LoRA weights from {lora_weight} with multiplier {lora_multiplier}")
weights_sd = load_file(lora_weight)
# Filter to exclude keys that are part of single_blocks
if args.exclude_single_blocks:
filtered_weights = {k: v for k, v in weights_sd.items() if "single_blocks" not in k}
weights_sd = filtered_weights
if args.lycoris:
lycoris_net, _ = create_network_from_weights(
multiplier=lora_multiplier,
file=None,
weights_sd=weights_sd,
unet=transformer,
text_encoder=None,
vae=None,
for_inference=True,
)
else:
network = lora.create_arch_network_from_weights(
lora_multiplier, weights_sd, unet=transformer, for_inference=True
)
logger.info("Merging LoRA weights to DiT model")
# try:
# network.apply_to(None, transformer, apply_text_encoder=False, apply_unet=True)
# info = network.load_state_dict(weights_sd, strict=True)
# logger.info(f"Loaded LoRA weights from {weights_file}: {info}")
# network.eval()
# network.to(device)
# except Exception as e:
if args.lycoris:
lycoris_net.merge_to(None, transformer, weights_sd, dtype=None, device=device)
else:
network.merge_to(None, transformer, weights_sd, device=device, non_blocking=True)
synchronize_device(device)
logger.info("LoRA weights loaded")
# save model here before casting to dit_weight_dtype
if args.save_merged_model:
logger.info(f"Saving merged model to {args.save_merged_model}")
mem_eff_save_file(transformer.state_dict(), args.save_merged_model) # save_file needs a lot of memory
logger.info("Merged model saved")
return
logger.info(f"Casting model to {dit_weight_dtype}")
transformer.to(dtype=dit_weight_dtype)
if args.fp8_fast:
logger.info("Enabling FP8 acceleration")
params_to_keep = {"norm", "bias", "time_in", "vector_in", "guidance_in", "txt_in", "img_in"}
for name, param in transformer.named_parameters():
dtype_to_use = dit_dtype if any(keyword in name for keyword in params_to_keep) else dit_weight_dtype
param.to(dtype=dtype_to_use)
convert_fp8_linear(transformer, dit_dtype, params_to_keep=params_to_keep)
if args.compile:
compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
logger.info(
f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
)
torch._dynamo.config.cache_size_limit = 32
for i, block in enumerate(transformer.single_blocks):
compiled_block = torch.compile(
block,
backend=compile_backend,
mode=compile_mode,
dynamic=compile_dynamic.lower() in "true",
fullgraph=compile_fullgraph.lower() in "true",
)
transformer.single_blocks[i] = compiled_block
for i, block in enumerate(transformer.double_blocks):
compiled_block = torch.compile(
block,
backend=compile_backend,
mode=compile_mode,
dynamic=compile_dynamic.lower() in "true",
fullgraph=compile_fullgraph.lower() in "true",
)
transformer.double_blocks[i] = compiled_block
if blocks_to_swap > 0:
logger.info(f"Enable swap {blocks_to_swap} blocks to CPU from device: {device}")
transformer.enable_block_swap(blocks_to_swap, device, supports_backward=False)
transformer.move_to_device_except_swap_blocks(device)
transformer.prepare_block_swap_before_forward()
else:
logger.info(f"Moving model to {device}")
transformer.to(device=device)
if args.img_in_txt_in_offloading:
logger.info("Enable offloading img_in and txt_in to CPU")
transformer.enable_img_in_txt_in_offloading()
# load scheduler
logger.info(f"Loading scheduler")
scheduler = FlowMatchDiscreteScheduler(shift=args.flow_shift, reverse=True, solver="euler")
# Prepare timesteps
num_inference_steps = args.infer_steps
scheduler.set_timesteps(num_inference_steps, device=device) # n_tokens is not used in FlowMatchDiscreteScheduler
timesteps = scheduler.timesteps
# Prepare generator
num_videos_per_prompt = 1 # args.num_videos # currently only support 1 video per prompt, this is a batch size
seed = args.seed
if seed is None:
seeds = [random.randint(0, 2**32 - 1) for _ in range(num_videos_per_prompt)]
elif isinstance(seed, int):
seeds = [seed + i for i in range(num_videos_per_prompt)]
else:
raise ValueError(f"Seed must be an integer or None, got {seed}.")
generator = [torch.Generator(device).manual_seed(seed) for seed in seeds]
# Prepare noisy latents
num_channels_latents = 16 # transformer.config.in_channels
vae_scale_factor = 2 ** (4 - 1) # len(self.vae.config.block_out_channels) == 4
vae_ver = vae.VAE_VER
if "884" in vae_ver:
latent_video_length = (video_length - 1) // 4 + 1
elif "888" in vae_ver:
latent_video_length = (video_length - 1) // 8 + 1
else:
latent_video_length = video_length
# shape = (
# num_videos_per_prompt,
# num_channels_latents,
# latent_video_length,
# height // vae_scale_factor,
# width // vae_scale_factor,
# )
# latents = randn_tensor(shape, generator=generator, device=device, dtype=dit_dtype)
# make first N frames to be the same if the given seed is same
shape_of_frame = (num_videos_per_prompt, num_channels_latents, 1, height // vae_scale_factor, width // vae_scale_factor)
latents = []
for i in range(latent_video_length):
latents.append(randn_tensor(shape_of_frame, generator=generator, device=device, dtype=dit_dtype))
latents = torch.cat(latents, dim=2)
# pad image_latents to match the length of video_latents
if image_latents is not None:
zero_latents = torch.zeros_like(latents)
zero_latents[:, :, :1, :, :] = image_latents
image_latents = zero_latents
if args.video_path is not None:
# v2v inference
noise = latents
assert noise.shape == video_latents.shape, f"noise shape {noise.shape} != video_latents shape {video_latents.shape}"
num_inference_steps = int(num_inference_steps * args.strength)
timestep_start = scheduler.timesteps[-num_inference_steps] # larger strength, less inference steps and more start time
t = timestep_start / 1000.0
latents = noise * t + video_latents * (1 - t)
timesteps = timesteps[-num_inference_steps:]
logger.info(f"strength: {args.strength}, num_inference_steps: {num_inference_steps}, timestep_start: {timestep_start}")
# FlowMatchDiscreteScheduler does not have init_noise_sigma
# Denoising loop
embedded_guidance_scale = args.embedded_cfg_scale
if embedded_guidance_scale is not None:
guidance_expand = torch.tensor([embedded_guidance_scale * 1000.0] * latents.shape[0], dtype=torch.float32, device="cpu")
guidance_expand = guidance_expand.to(device=device, dtype=dit_dtype)
if do_classifier_free_guidance:
guidance_expand = torch.cat([guidance_expand, guidance_expand], dim=0)
else:
guidance_expand = None
freqs_cos, freqs_sin = get_rotary_pos_embed(vae_ver, transformer, video_length, height, width)
# n_tokens = freqs_cos.shape[0]
# move and cast all inputs to the correct device and dtype
prompt_embeds = prompt_embeds.to(device=device, dtype=dit_dtype)
prompt_mask = prompt_mask.to(device=device)
prompt_embeds_2 = prompt_embeds_2.to(device=device, dtype=dit_dtype)
prompt_mask_2 = prompt_mask_2.to(device=device)
freqs_cos = freqs_cos.to(device=device, dtype=dit_dtype)
freqs_sin = freqs_sin.to(device=device, dtype=dit_dtype)
num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order # this should be 0 in v2v inference
# assert split_uncond and split_attn
if args.split_attn and do_classifier_free_guidance and not args.split_uncond:
logger.warning("split_attn is enabled, split_uncond will be enabled as well.")
args.split_uncond = True
# with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA]) as p:
with tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latents = scheduler.scale_model_input(latents, t)
# predict the noise residual
with torch.no_grad(), accelerator.autocast():
latents_input = latents if not do_classifier_free_guidance else torch.cat([latents, latents], dim=0)
if image_latents is not None:
latents_image_input = (
image_latents if not do_classifier_free_guidance else torch.cat([image_latents, image_latents], dim=0)
)
latents_input = torch.cat([latents_input, latents_image_input], dim=1) # 1 or 2, C*2, F, H, W
batch_size = 1 if args.split_uncond else latents_input.shape[0]
noise_pred_list = []
for j in range(0, latents_input.shape[0], batch_size):
noise_pred = transformer( # For an input image (129, 192, 336) (1, 256, 256)
latents_input[j : j + batch_size], # [1, 16, 33, 24, 42]
t.repeat(batch_size).to(device=device, dtype=dit_dtype), # [1]
text_states=prompt_embeds[j : j + batch_size], # [1, 256, 4096]
text_mask=prompt_mask[j : j + batch_size], # [1, 256]
text_states_2=prompt_embeds_2[j : j + batch_size], # [1, 768]
freqs_cos=freqs_cos, # [seqlen, head_dim]
freqs_sin=freqs_sin, # [seqlen, head_dim]
guidance=guidance_expand[j : j + batch_size], # [1]
return_dict=True,
)["x"]
noise_pred_list.append(noise_pred)
noise_pred = torch.cat(noise_pred_list, dim=0)
# perform classifier free guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)
# # SkyReels' rescale noise config is omitted for now
# if guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(
# noise_pred,
# noise_pred_cond,
# guidance_rescale=self.guidance_rescale,
# )
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
# update progress bar
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
if progress_bar is not None:
progress_bar.update()
# print(p.key_averages().table(sort_by="self_cpu_time_total", row_limit=-1))
# print(p.key_averages().table(sort_by="self_cuda_time_total", row_limit=-1))
latents = latents.detach().cpu()
transformer = None
clean_memory_on_device(device)
# Save samples
output_type = args.output_type
save_path = args.save_path # if args.save_path_suffix == "" else f"{args.save_path}_{args.save_path_suffix}"
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
if output_type == "latent" or output_type == "both":
# save latent
for i, latent in enumerate(latents):
latent_path = f"{save_path}/{time_flag}_{i}_{seeds[i]}_latent.safetensors"
if args.no_metadata:
metadata = None
else:
metadata = {
"seeds": f"{seeds[i]}",
"prompt": f"{args.prompt}",
"height": f"{height}",
"width": f"{width}",
"video_length": f"{video_length}",
"infer_steps": f"{num_inference_steps}",
"guidance_scale": f"{args.guidance_scale}",
"embedded_cfg_scale": f"{args.embedded_cfg_scale}",
}
if args.negative_prompt is not None:
metadata["negative_prompt"] = f"{args.negative_prompt}"
sd = {"latent": latent}
save_file(sd, latent_path, metadata=metadata)
logger.info(f"Latent save to: {latent_path}")
if output_type == "video" or output_type == "both":
# save video
videos = decode_latents(args, latents, device)
for i, sample in enumerate(videos):
original_name = "" if original_base_names is None else f"_{original_base_names[i]}"
sample = sample.unsqueeze(0)
video_path = f"{save_path}/{time_flag}_{i}_{seeds[i]}{original_name}.mp4"
save_videos_grid(sample, video_path, fps=args.fps)
logger.info(f"Sample save to: {video_path}")
elif output_type == "images":
# save images
videos = decode_latents(args, latents, device)
for i, sample in enumerate(videos):
original_name = "" if original_base_names is None else f"_{original_base_names[i]}"
sample = sample.unsqueeze(0)
image_name = f"{time_flag}_{i}_{seeds[i]}{original_name}"
save_images_grid(sample, save_path, image_name)
logger.info(f"Sample images save to: {save_path}/{image_name}")
logger.info("Done!")
if __name__ == "__main__":
main()