|
import argparse |
|
from datetime import datetime |
|
from pathlib import Path |
|
import random |
|
import sys |
|
import os |
|
import time |
|
from typing import Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision |
|
import accelerate |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from transformers.models.llama import LlamaModel |
|
from tqdm import tqdm |
|
import av |
|
from einops import rearrange |
|
from safetensors.torch import load_file, save_file |
|
from safetensors import safe_open |
|
from PIL import Image |
|
|
|
from hunyuan_model import vae |
|
from hunyuan_model.text_encoder import TextEncoder |
|
from hunyuan_model.text_encoder import PROMPT_TEMPLATE |
|
from hunyuan_model.vae import load_vae |
|
from hunyuan_model.models import load_transformer, get_rotary_pos_embed |
|
from hunyuan_model.fp8_optimization import convert_fp8_linear |
|
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler |
|
from networks import lora |
|
|
|
try: |
|
from lycoris.kohya import create_network_from_weights |
|
except: |
|
pass |
|
|
|
from utils.model_utils import str_to_dtype |
|
from utils.safetensors_utils import mem_eff_save_file |
|
from dataset.image_video_dataset import load_video, glob_images, resize_image_to_bucket |
|
|
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
def clean_memory_on_device(device): |
|
if device.type == "cuda": |
|
torch.cuda.empty_cache() |
|
elif device.type == "cpu": |
|
pass |
|
elif device.type == "mps": |
|
torch.mps.empty_cache() |
|
|
|
|
|
def synchronize_device(device: torch.device): |
|
if device.type == "cuda": |
|
torch.cuda.synchronize() |
|
elif device.type == "xpu": |
|
torch.xpu.synchronize() |
|
elif device.type == "mps": |
|
torch.mps.synchronize() |
|
|
|
|
|
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24): |
|
"""save videos by video tensor |
|
copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61 |
|
|
|
Args: |
|
videos (torch.Tensor): video tensor predicted by the model |
|
path (str): path to save video |
|
rescale (bool, optional): rescale the video tensor from [-1, 1] to . Defaults to False. |
|
n_rows (int, optional): Defaults to 1. |
|
fps (int, optional): video save fps. Defaults to 8. |
|
""" |
|
videos = rearrange(videos, "b c t h w -> t b c h w") |
|
outputs = [] |
|
for x in videos: |
|
x = torchvision.utils.make_grid(x, nrow=n_rows) |
|
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) |
|
if rescale: |
|
x = (x + 1.0) / 2.0 |
|
x = torch.clamp(x, 0, 1) |
|
x = (x * 255).numpy().astype(np.uint8) |
|
outputs.append(x) |
|
|
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
height, width, _ = outputs[0].shape |
|
|
|
|
|
container = av.open(path, mode="w") |
|
|
|
|
|
codec = "libx264" |
|
pixel_format = "yuv420p" |
|
stream = container.add_stream(codec, rate=fps) |
|
stream.width = width |
|
stream.height = height |
|
stream.pix_fmt = pixel_format |
|
stream.bit_rate = 4000000 |
|
|
|
for frame_array in outputs: |
|
frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24") |
|
packets = stream.encode(frame) |
|
for packet in packets: |
|
container.mux(packet) |
|
|
|
for packet in stream.encode(): |
|
container.mux(packet) |
|
|
|
container.close() |
|
|
|
|
|
def save_images_grid( |
|
videos: torch.Tensor, parent_dir: str, image_name: str, rescale: bool = False, n_rows: int = 1, create_subdir=True |
|
): |
|
videos = rearrange(videos, "b c t h w -> t b c h w") |
|
outputs = [] |
|
for x in videos: |
|
x = torchvision.utils.make_grid(x, nrow=n_rows) |
|
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) |
|
if rescale: |
|
x = (x + 1.0) / 2.0 |
|
x = torch.clamp(x, 0, 1) |
|
x = (x * 255).numpy().astype(np.uint8) |
|
outputs.append(x) |
|
|
|
if create_subdir: |
|
output_dir = os.path.join(parent_dir, image_name) |
|
else: |
|
output_dir = parent_dir |
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
for i, x in enumerate(outputs): |
|
image_path = os.path.join(output_dir, f"{image_name}_{i:03d}.png") |
|
image = Image.fromarray(x) |
|
image.save(image_path) |
|
|
|
|
|
|
|
|
|
|
|
def encode_prompt(prompt: Union[str, list[str]], device: torch.device, num_videos_per_prompt: int, text_encoder: TextEncoder): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_videos_per_prompt (`int`): |
|
number of videos that should be generated per prompt |
|
text_encoder (TextEncoder): |
|
text encoder to be used for encoding the prompt |
|
""" |
|
|
|
|
|
|
|
data_type = "video" |
|
|
|
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type) |
|
|
|
with torch.no_grad(): |
|
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type, device=device) |
|
prompt_embeds = prompt_outputs.hidden_state |
|
|
|
attention_mask = prompt_outputs.attention_mask |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(device) |
|
bs_embed, seq_len = attention_mask.shape |
|
attention_mask = attention_mask.repeat(1, num_videos_per_prompt) |
|
attention_mask = attention_mask.view(bs_embed * num_videos_per_prompt, seq_len) |
|
|
|
prompt_embeds_dtype = text_encoder.dtype |
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
if prompt_embeds.ndim == 2: |
|
bs_embed, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1) |
|
else: |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) |
|
|
|
return prompt_embeds, attention_mask |
|
|
|
|
|
def encode_input_prompt(prompt: Union[str, list[str]], args, device, fp8_llm=False, accelerator=None): |
|
|
|
prompt_template_video = "dit-llm-encode-video" |
|
prompt_template = "dit-llm-encode" |
|
text_encoder_dtype = torch.float16 |
|
text_encoder_type = "llm" |
|
text_len = 256 |
|
hidden_state_skip_layer = 2 |
|
apply_final_norm = False |
|
reproduce = False |
|
|
|
text_encoder_2_type = "clipL" |
|
text_len_2 = 77 |
|
|
|
num_videos = 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
crop_start = PROMPT_TEMPLATE[prompt_template_video].get("crop_start", 0) |
|
max_length = text_len + crop_start |
|
|
|
|
|
prompt_template = PROMPT_TEMPLATE[prompt_template] |
|
|
|
|
|
prompt_template_video = PROMPT_TEMPLATE[prompt_template_video] |
|
|
|
|
|
logger.info(f"loading text encoder: {args.text_encoder1}") |
|
text_encoder = TextEncoder( |
|
text_encoder_type=text_encoder_type, |
|
max_length=max_length, |
|
text_encoder_dtype=text_encoder_dtype, |
|
text_encoder_path=args.text_encoder1, |
|
tokenizer_type=text_encoder_type, |
|
prompt_template=prompt_template, |
|
prompt_template_video=prompt_template_video, |
|
hidden_state_skip_layer=hidden_state_skip_layer, |
|
apply_final_norm=apply_final_norm, |
|
reproduce=reproduce, |
|
) |
|
text_encoder.eval() |
|
if fp8_llm: |
|
org_dtype = text_encoder.dtype |
|
logger.info(f"Moving and casting text encoder to {device} and torch.float8_e4m3fn") |
|
text_encoder.to(device=device, dtype=torch.float8_e4m3fn) |
|
|
|
|
|
def prepare_fp8(llama_model: LlamaModel, target_dtype): |
|
def forward_hook(module): |
|
def forward(hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + module.variance_epsilon) |
|
return module.weight.to(input_dtype) * hidden_states.to(input_dtype) |
|
|
|
return forward |
|
|
|
for module in llama_model.modules(): |
|
if module.__class__.__name__ in ["Embedding"]: |
|
|
|
module.to(target_dtype) |
|
if module.__class__.__name__ in ["LlamaRMSNorm"]: |
|
|
|
module.forward = forward_hook(module) |
|
|
|
prepare_fp8(text_encoder.model, org_dtype) |
|
|
|
logger.info(f"loading text encoder 2: {args.text_encoder2}") |
|
text_encoder_2 = TextEncoder( |
|
text_encoder_type=text_encoder_2_type, |
|
max_length=text_len_2, |
|
text_encoder_dtype=text_encoder_dtype, |
|
text_encoder_path=args.text_encoder2, |
|
tokenizer_type=text_encoder_2_type, |
|
reproduce=reproduce, |
|
) |
|
text_encoder_2.eval() |
|
|
|
|
|
logger.info(f"Encoding prompt with text encoder 1") |
|
text_encoder.to(device=device) |
|
if fp8_llm: |
|
with accelerator.autocast(): |
|
prompt_embeds, prompt_mask = encode_prompt(prompt, device, num_videos, text_encoder) |
|
else: |
|
prompt_embeds, prompt_mask = encode_prompt(prompt, device, num_videos, text_encoder) |
|
text_encoder = None |
|
clean_memory_on_device(device) |
|
|
|
logger.info(f"Encoding prompt with text encoder 2") |
|
text_encoder_2.to(device=device) |
|
prompt_embeds_2, prompt_mask_2 = encode_prompt(prompt, device, num_videos, text_encoder_2) |
|
|
|
prompt_embeds = prompt_embeds.to("cpu") |
|
prompt_mask = prompt_mask.to("cpu") |
|
prompt_embeds_2 = prompt_embeds_2.to("cpu") |
|
prompt_mask_2 = prompt_mask_2.to("cpu") |
|
|
|
text_encoder_2 = None |
|
clean_memory_on_device(device) |
|
|
|
return prompt_embeds, prompt_mask, prompt_embeds_2, prompt_mask_2 |
|
|
|
|
|
|
|
|
|
|
|
def prepare_vae(args, device): |
|
vae_dtype = torch.float16 if args.vae_dtype is None else str_to_dtype(args.vae_dtype) |
|
vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device=device, vae_path=args.vae) |
|
vae.eval() |
|
|
|
|
|
|
|
chunk_size = args.vae_chunk_size |
|
if chunk_size is not None: |
|
vae.set_chunk_size_for_causal_conv_3d(chunk_size) |
|
logger.info(f"Set chunk_size to {chunk_size} for CausalConv3d") |
|
|
|
if args.vae_spatial_tile_sample_min_size is not None: |
|
vae.enable_spatial_tiling(True) |
|
vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size |
|
vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8 |
|
|
|
else: |
|
vae.enable_spatial_tiling(True) |
|
|
|
return vae, vae_dtype |
|
|
|
|
|
def encode_to_latents(args, video, device): |
|
vae, vae_dtype = prepare_vae(args, device) |
|
|
|
video = video.to(device=device, dtype=vae_dtype) |
|
video = video * 2 - 1 |
|
with torch.no_grad(): |
|
latents = vae.encode(video).latent_dist.sample() |
|
|
|
if hasattr(vae.config, "shift_factor") and vae.config.shift_factor: |
|
latents = (latents - vae.config.shift_factor) * vae.config.scaling_factor |
|
else: |
|
latents = latents * vae.config.scaling_factor |
|
|
|
return latents |
|
|
|
|
|
def decode_latents(args, latents, device): |
|
vae, vae_dtype = prepare_vae(args, device) |
|
|
|
expand_temporal_dim = False |
|
if len(latents.shape) == 4: |
|
latents = latents.unsqueeze(2) |
|
expand_temporal_dim = True |
|
elif len(latents.shape) == 5: |
|
pass |
|
else: |
|
raise ValueError(f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}.") |
|
|
|
if hasattr(vae.config, "shift_factor") and vae.config.shift_factor: |
|
latents = latents / vae.config.scaling_factor + vae.config.shift_factor |
|
else: |
|
latents = latents / vae.config.scaling_factor |
|
|
|
latents = latents.to(device=device, dtype=vae_dtype) |
|
with torch.no_grad(): |
|
image = vae.decode(latents, return_dict=False)[0] |
|
|
|
if expand_temporal_dim: |
|
image = image.squeeze(2) |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().float() |
|
|
|
return image |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="HunyuanVideo inference script") |
|
|
|
parser.add_argument("--dit", type=str, required=True, help="DiT checkpoint path or directory") |
|
parser.add_argument( |
|
"--dit_in_channels", |
|
type=int, |
|
default=None, |
|
help="input channels for DiT, default is None (automatically detect). 32 for SkyReels-I2V, 16 for others", |
|
) |
|
parser.add_argument("--vae", type=str, required=True, help="VAE checkpoint path or directory") |
|
parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is float16") |
|
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory") |
|
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory") |
|
|
|
|
|
parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path") |
|
parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier") |
|
parser.add_argument( |
|
"--save_merged_model", |
|
type=str, |
|
default=None, |
|
help="Save merged model to path. If specified, no inference will be performed.", |
|
) |
|
parser.add_argument("--exclude_single_blocks", action="store_true", help="Exclude single blocks when loading LoRA weights") |
|
|
|
|
|
parser.add_argument("--prompt", type=str, required=True, help="prompt for generation") |
|
parser.add_argument("--negative_prompt", type=str, default=None, help="negative prompt for generation") |
|
parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size") |
|
parser.add_argument("--video_length", type=int, default=129, help="video length") |
|
parser.add_argument("--fps", type=int, default=24, help="video fps") |
|
parser.add_argument("--infer_steps", type=int, default=50, help="number of inference steps") |
|
parser.add_argument("--save_path", type=str, required=True, help="path to save generated video") |
|
parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.") |
|
parser.add_argument( |
|
"--guidance_scale", |
|
type=float, |
|
default=1.0, |
|
help="Guidance scale for classifier free guidance. Default is 1.0 (means no guidance)", |
|
) |
|
parser.add_argument("--embedded_cfg_scale", type=float, default=6.0, help="Embeded classifier free guidance scale.") |
|
parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference") |
|
parser.add_argument( |
|
"--image_path", type=str, default=None, help="path to image for image2video inference, only works for SkyReels-I2V model" |
|
) |
|
parser.add_argument( |
|
"--split_uncond", |
|
action="store_true", |
|
help="split unconditional call for classifier free guidance, slower but less memory usage", |
|
) |
|
parser.add_argument("--strength", type=float, default=0.8, help="strength for video2video inference") |
|
|
|
|
|
parser.add_argument("--flow_shift", type=float, default=7.0, help="Shift factor for flow matching schedulers.") |
|
|
|
parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model") |
|
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)") |
|
parser.add_argument( |
|
"--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU" |
|
) |
|
parser.add_argument( |
|
"--attn_mode", type=str, default="torch", choices=["flash", "torch", "sageattn", "xformers", "sdpa"], help="attention mode" |
|
) |
|
parser.add_argument( |
|
"--split_attn", action="store_true", help="use split attention, default is False. if True, --split_uncond becomes True" |
|
) |
|
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE") |
|
parser.add_argument( |
|
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256" |
|
) |
|
parser.add_argument("--blocks_to_swap", type=int, default=None, help="number of blocks to swap in the model") |
|
parser.add_argument("--img_in_txt_in_offloading", action="store_true", help="offload img_in and txt_in to cpu") |
|
parser.add_argument( |
|
"--output_type", type=str, default="video", choices=["video", "images", "latent", "both"], help="output type" |
|
) |
|
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata") |
|
parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference") |
|
parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference") |
|
parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arthimetic(RTX 4XXX+)") |
|
parser.add_argument("--compile", action="store_true", help="Enable torch.compile") |
|
parser.add_argument( |
|
"--compile_args", |
|
nargs=4, |
|
metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"), |
|
default=["inductor", "max-autotune-no-cudagraphs", "False", "False"], |
|
help="Torch.compile settings", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
assert (args.latent_path is None or len(args.latent_path) == 0) or ( |
|
args.output_type == "images" or args.output_type == "video" |
|
), "latent_path is only supported for images or video output" |
|
|
|
|
|
|
|
if args.fp8_fast and not args.fp8: |
|
raise ValueError("--fp8_fast requires --fp8") |
|
|
|
return args |
|
|
|
|
|
def check_inputs(args): |
|
height = args.video_size[0] |
|
width = args.video_size[1] |
|
video_length = args.video_length |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
return height, width, video_length |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu" |
|
device = torch.device(device) |
|
dit_dtype = torch.bfloat16 |
|
dit_weight_dtype = torch.float8_e4m3fn if args.fp8 else dit_dtype |
|
logger.info(f"Using device: {device}, DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}") |
|
|
|
original_base_names = None |
|
if args.latent_path is not None and len(args.latent_path) > 0: |
|
original_base_names = [] |
|
latents_list = [] |
|
seeds = [] |
|
for latent_path in args.latent_path: |
|
original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0]) |
|
seed = 0 |
|
|
|
if os.path.splitext(latent_path)[1] != ".safetensors": |
|
latents = torch.load(latent_path, map_location="cpu") |
|
else: |
|
latents = load_file(latent_path)["latent"] |
|
with safe_open(latent_path, framework="pt") as f: |
|
metadata = f.metadata() |
|
if metadata is None: |
|
metadata = {} |
|
logger.info(f"Loaded metadata: {metadata}") |
|
|
|
if "seeds" in metadata: |
|
seed = int(metadata["seeds"]) |
|
|
|
seeds.append(seed) |
|
latents_list.append(latents) |
|
|
|
logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}") |
|
latents = torch.stack(latents_list, dim=0) |
|
else: |
|
|
|
mixed_precision = "bf16" if dit_dtype == torch.bfloat16 else "fp16" |
|
accelerator = accelerate.Accelerator(mixed_precision=mixed_precision) |
|
|
|
|
|
prompt = args.prompt |
|
assert prompt is not None, "prompt is required" |
|
|
|
|
|
height, width, video_length = check_inputs(args) |
|
|
|
|
|
logger.info(f"Encoding prompt: {prompt}") |
|
|
|
do_classifier_free_guidance = args.guidance_scale != 1.0 |
|
if do_classifier_free_guidance: |
|
negative_prompt = args.negative_prompt |
|
if negative_prompt is None: |
|
logger.info("Negative prompt is not provided, using empty prompt") |
|
negative_prompt = "" |
|
logger.info(f"Encoding negative prompt: {negative_prompt}") |
|
prompt = [negative_prompt, prompt] |
|
else: |
|
if args.negative_prompt is not None: |
|
logger.warning("Negative prompt is provided but guidance_scale is 1.0, negative prompt will be ignored.") |
|
|
|
prompt_embeds, prompt_mask, prompt_embeds_2, prompt_mask_2 = encode_input_prompt( |
|
prompt, args, device, args.fp8_llm, accelerator |
|
) |
|
|
|
|
|
video_latents = None |
|
if args.video_path is not None: |
|
|
|
logger.info(f"Video2Video inference: {args.video_path}") |
|
video = load_video(args.video_path, 0, video_length, bucket_reso=(width, height)) |
|
if len(video) < video_length: |
|
raise ValueError(f"Video length is less than {video_length}") |
|
video = np.stack(video, axis=0) |
|
video = torch.from_numpy(video).permute(3, 0, 1, 2).unsqueeze(0).float() |
|
video = video / 255.0 |
|
|
|
logger.info(f"Encoding video to latents") |
|
video_latents = encode_to_latents(args, video, device) |
|
video_latents = video_latents.to(device=device, dtype=dit_dtype) |
|
|
|
clean_memory_on_device(device) |
|
|
|
|
|
image_latents = None |
|
if args.image_path is not None: |
|
|
|
logger.info(f"Image2Video inference: {args.image_path}") |
|
|
|
image = Image.open(args.image_path) |
|
image = resize_image_to_bucket(image, (width, height)) |
|
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).unsqueeze(2).float() |
|
image = image / 255.0 |
|
|
|
logger.info(f"Encoding image to latents") |
|
image_latents = encode_to_latents(args, image, device) |
|
image_latents = image_latents.to(device=device, dtype=dit_dtype) |
|
|
|
clean_memory_on_device(device) |
|
|
|
|
|
blocks_to_swap = args.blocks_to_swap if args.blocks_to_swap else 0 |
|
loading_device = "cpu" |
|
|
|
logger.info(f"Loading DiT model from {args.dit}") |
|
if args.attn_mode == "sdpa": |
|
args.attn_mode = "torch" |
|
|
|
|
|
dit_in_channels = args.dit_in_channels if args.dit_in_channels is not None else (32 if image_latents is not None else 16) |
|
|
|
|
|
|
|
|
|
transformer = load_transformer( |
|
args.dit, args.attn_mode, args.split_attn, loading_device, dit_dtype, in_channels=dit_in_channels |
|
) |
|
transformer.eval() |
|
|
|
|
|
if args.lora_weight is not None and len(args.lora_weight) > 0: |
|
for i, lora_weight in enumerate(args.lora_weight): |
|
if args.lora_multiplier is not None and len(args.lora_multiplier) > i: |
|
lora_multiplier = args.lora_multiplier[i] |
|
else: |
|
lora_multiplier = 1.0 |
|
|
|
logger.info(f"Loading LoRA weights from {lora_weight} with multiplier {lora_multiplier}") |
|
weights_sd = load_file(lora_weight) |
|
|
|
|
|
if args.exclude_single_blocks: |
|
filtered_weights = {k: v for k, v in weights_sd.items() if "single_blocks" not in k} |
|
weights_sd = filtered_weights |
|
|
|
if args.lycoris: |
|
lycoris_net, _ = create_network_from_weights( |
|
multiplier=lora_multiplier, |
|
file=None, |
|
weights_sd=weights_sd, |
|
unet=transformer, |
|
text_encoder=None, |
|
vae=None, |
|
for_inference=True, |
|
) |
|
else: |
|
network = lora.create_arch_network_from_weights( |
|
lora_multiplier, weights_sd, unet=transformer, for_inference=True |
|
) |
|
logger.info("Merging LoRA weights to DiT model") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.lycoris: |
|
lycoris_net.merge_to(None, transformer, weights_sd, dtype=None, device=device) |
|
else: |
|
network.merge_to(None, transformer, weights_sd, device=device, non_blocking=True) |
|
|
|
synchronize_device(device) |
|
|
|
logger.info("LoRA weights loaded") |
|
|
|
|
|
if args.save_merged_model: |
|
logger.info(f"Saving merged model to {args.save_merged_model}") |
|
mem_eff_save_file(transformer.state_dict(), args.save_merged_model) |
|
logger.info("Merged model saved") |
|
return |
|
|
|
logger.info(f"Casting model to {dit_weight_dtype}") |
|
transformer.to(dtype=dit_weight_dtype) |
|
|
|
if args.fp8_fast: |
|
logger.info("Enabling FP8 acceleration") |
|
params_to_keep = {"norm", "bias", "time_in", "vector_in", "guidance_in", "txt_in", "img_in"} |
|
for name, param in transformer.named_parameters(): |
|
dtype_to_use = dit_dtype if any(keyword in name for keyword in params_to_keep) else dit_weight_dtype |
|
param.to(dtype=dtype_to_use) |
|
convert_fp8_linear(transformer, dit_dtype, params_to_keep=params_to_keep) |
|
|
|
if args.compile: |
|
compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args |
|
logger.info( |
|
f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]" |
|
) |
|
torch._dynamo.config.cache_size_limit = 32 |
|
for i, block in enumerate(transformer.single_blocks): |
|
compiled_block = torch.compile( |
|
block, |
|
backend=compile_backend, |
|
mode=compile_mode, |
|
dynamic=compile_dynamic.lower() in "true", |
|
fullgraph=compile_fullgraph.lower() in "true", |
|
) |
|
transformer.single_blocks[i] = compiled_block |
|
for i, block in enumerate(transformer.double_blocks): |
|
compiled_block = torch.compile( |
|
block, |
|
backend=compile_backend, |
|
mode=compile_mode, |
|
dynamic=compile_dynamic.lower() in "true", |
|
fullgraph=compile_fullgraph.lower() in "true", |
|
) |
|
transformer.double_blocks[i] = compiled_block |
|
|
|
if blocks_to_swap > 0: |
|
logger.info(f"Enable swap {blocks_to_swap} blocks to CPU from device: {device}") |
|
transformer.enable_block_swap(blocks_to_swap, device, supports_backward=False) |
|
transformer.move_to_device_except_swap_blocks(device) |
|
transformer.prepare_block_swap_before_forward() |
|
else: |
|
logger.info(f"Moving model to {device}") |
|
transformer.to(device=device) |
|
if args.img_in_txt_in_offloading: |
|
logger.info("Enable offloading img_in and txt_in to CPU") |
|
transformer.enable_img_in_txt_in_offloading() |
|
|
|
|
|
logger.info(f"Loading scheduler") |
|
scheduler = FlowMatchDiscreteScheduler(shift=args.flow_shift, reverse=True, solver="euler") |
|
|
|
|
|
num_inference_steps = args.infer_steps |
|
scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = scheduler.timesteps |
|
|
|
|
|
num_videos_per_prompt = 1 |
|
seed = args.seed |
|
if seed is None: |
|
seeds = [random.randint(0, 2**32 - 1) for _ in range(num_videos_per_prompt)] |
|
elif isinstance(seed, int): |
|
seeds = [seed + i for i in range(num_videos_per_prompt)] |
|
else: |
|
raise ValueError(f"Seed must be an integer or None, got {seed}.") |
|
generator = [torch.Generator(device).manual_seed(seed) for seed in seeds] |
|
|
|
|
|
num_channels_latents = 16 |
|
vae_scale_factor = 2 ** (4 - 1) |
|
|
|
vae_ver = vae.VAE_VER |
|
if "884" in vae_ver: |
|
latent_video_length = (video_length - 1) // 4 + 1 |
|
elif "888" in vae_ver: |
|
latent_video_length = (video_length - 1) // 8 + 1 |
|
else: |
|
latent_video_length = video_length |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
shape_of_frame = (num_videos_per_prompt, num_channels_latents, 1, height // vae_scale_factor, width // vae_scale_factor) |
|
latents = [] |
|
for i in range(latent_video_length): |
|
latents.append(randn_tensor(shape_of_frame, generator=generator, device=device, dtype=dit_dtype)) |
|
latents = torch.cat(latents, dim=2) |
|
|
|
|
|
if image_latents is not None: |
|
zero_latents = torch.zeros_like(latents) |
|
zero_latents[:, :, :1, :, :] = image_latents |
|
image_latents = zero_latents |
|
|
|
if args.video_path is not None: |
|
|
|
noise = latents |
|
assert noise.shape == video_latents.shape, f"noise shape {noise.shape} != video_latents shape {video_latents.shape}" |
|
|
|
num_inference_steps = int(num_inference_steps * args.strength) |
|
timestep_start = scheduler.timesteps[-num_inference_steps] |
|
t = timestep_start / 1000.0 |
|
latents = noise * t + video_latents * (1 - t) |
|
|
|
timesteps = timesteps[-num_inference_steps:] |
|
|
|
logger.info(f"strength: {args.strength}, num_inference_steps: {num_inference_steps}, timestep_start: {timestep_start}") |
|
|
|
|
|
|
|
|
|
embedded_guidance_scale = args.embedded_cfg_scale |
|
if embedded_guidance_scale is not None: |
|
guidance_expand = torch.tensor([embedded_guidance_scale * 1000.0] * latents.shape[0], dtype=torch.float32, device="cpu") |
|
guidance_expand = guidance_expand.to(device=device, dtype=dit_dtype) |
|
if do_classifier_free_guidance: |
|
guidance_expand = torch.cat([guidance_expand, guidance_expand], dim=0) |
|
else: |
|
guidance_expand = None |
|
freqs_cos, freqs_sin = get_rotary_pos_embed(vae_ver, transformer, video_length, height, width) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.to(device=device, dtype=dit_dtype) |
|
prompt_mask = prompt_mask.to(device=device) |
|
prompt_embeds_2 = prompt_embeds_2.to(device=device, dtype=dit_dtype) |
|
prompt_mask_2 = prompt_mask_2.to(device=device) |
|
|
|
freqs_cos = freqs_cos.to(device=device, dtype=dit_dtype) |
|
freqs_sin = freqs_sin.to(device=device, dtype=dit_dtype) |
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order |
|
|
|
|
|
if args.split_attn and do_classifier_free_guidance and not args.split_uncond: |
|
logger.warning("split_attn is enabled, split_uncond will be enabled as well.") |
|
args.split_uncond = True |
|
|
|
|
|
with tqdm(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
latents = scheduler.scale_model_input(latents, t) |
|
|
|
|
|
with torch.no_grad(), accelerator.autocast(): |
|
latents_input = latents if not do_classifier_free_guidance else torch.cat([latents, latents], dim=0) |
|
if image_latents is not None: |
|
latents_image_input = ( |
|
image_latents if not do_classifier_free_guidance else torch.cat([image_latents, image_latents], dim=0) |
|
) |
|
latents_input = torch.cat([latents_input, latents_image_input], dim=1) |
|
|
|
batch_size = 1 if args.split_uncond else latents_input.shape[0] |
|
|
|
noise_pred_list = [] |
|
for j in range(0, latents_input.shape[0], batch_size): |
|
noise_pred = transformer( |
|
latents_input[j : j + batch_size], |
|
t.repeat(batch_size).to(device=device, dtype=dit_dtype), |
|
text_states=prompt_embeds[j : j + batch_size], |
|
text_mask=prompt_mask[j : j + batch_size], |
|
text_states_2=prompt_embeds_2[j : j + batch_size], |
|
freqs_cos=freqs_cos, |
|
freqs_sin=freqs_sin, |
|
guidance=guidance_expand[j : j + batch_size], |
|
return_dict=True, |
|
)["x"] |
|
noise_pred_list.append(noise_pred) |
|
noise_pred = torch.cat(noise_pred_list, dim=0) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): |
|
if progress_bar is not None: |
|
progress_bar.update() |
|
|
|
|
|
|
|
|
|
latents = latents.detach().cpu() |
|
transformer = None |
|
clean_memory_on_device(device) |
|
|
|
|
|
output_type = args.output_type |
|
save_path = args.save_path |
|
os.makedirs(save_path, exist_ok=True) |
|
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S") |
|
|
|
if output_type == "latent" or output_type == "both": |
|
|
|
for i, latent in enumerate(latents): |
|
latent_path = f"{save_path}/{time_flag}_{i}_{seeds[i]}_latent.safetensors" |
|
|
|
if args.no_metadata: |
|
metadata = None |
|
else: |
|
metadata = { |
|
"seeds": f"{seeds[i]}", |
|
"prompt": f"{args.prompt}", |
|
"height": f"{height}", |
|
"width": f"{width}", |
|
"video_length": f"{video_length}", |
|
"infer_steps": f"{num_inference_steps}", |
|
"guidance_scale": f"{args.guidance_scale}", |
|
"embedded_cfg_scale": f"{args.embedded_cfg_scale}", |
|
} |
|
if args.negative_prompt is not None: |
|
metadata["negative_prompt"] = f"{args.negative_prompt}" |
|
sd = {"latent": latent} |
|
save_file(sd, latent_path, metadata=metadata) |
|
|
|
logger.info(f"Latent save to: {latent_path}") |
|
if output_type == "video" or output_type == "both": |
|
|
|
videos = decode_latents(args, latents, device) |
|
for i, sample in enumerate(videos): |
|
original_name = "" if original_base_names is None else f"_{original_base_names[i]}" |
|
sample = sample.unsqueeze(0) |
|
video_path = f"{save_path}/{time_flag}_{i}_{seeds[i]}{original_name}.mp4" |
|
save_videos_grid(sample, video_path, fps=args.fps) |
|
logger.info(f"Sample save to: {video_path}") |
|
elif output_type == "images": |
|
|
|
videos = decode_latents(args, latents, device) |
|
for i, sample in enumerate(videos): |
|
original_name = "" if original_base_names is None else f"_{original_base_names[i]}" |
|
sample = sample.unsqueeze(0) |
|
image_name = f"{time_flag}_{i}_{seeds[i]}{original_name}" |
|
save_images_grid(sample, save_path, image_name) |
|
logger.info(f"Sample images save to: {save_path}/{image_name}") |
|
|
|
logger.info("Done!") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|