YiChen_FramePack_lora_early / hv_train_network.py
svjack's picture
Upload folder using huggingface_hub
ef46f0f verified
raw
history blame
119 kB
import ast
import asyncio
from datetime import timedelta
import gc
import importlib
import argparse
import math
import os
import pathlib
import re
import sys
import random
import time
import json
from multiprocessing import Value
from typing import Any, Dict, List, Optional
import accelerate
import numpy as np
from packaging.version import Version
from PIL import Image
import huggingface_hub
import toml
import torch
from tqdm import tqdm
from accelerate.utils import TorchDynamoPlugin, set_seed, DynamoBackend
from accelerate import Accelerator, InitProcessGroupKwargs, DistributedDataParallelKwargs, PartialState
from safetensors.torch import load_file
import transformers
from diffusers.optimization import (
SchedulerType as DiffusersSchedulerType,
TYPE_TO_SCHEDULER_FUNCTION as DIFFUSERS_TYPE_TO_SCHEDULER_FUNCTION,
)
from transformers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION
from dataset import config_utils
from hunyuan_model.models import load_transformer, get_rotary_pos_embed_by_shape, HYVideoDiffusionTransformer
import hunyuan_model.text_encoder as text_encoder_module
from hunyuan_model.vae import load_vae, VAE_VER
import hunyuan_model.vae as vae_module
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
import networks.lora as lora_module
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
from dataset.image_video_dataset import ARCHITECTURE_HUNYUAN_VIDEO, ARCHITECTURE_HUNYUAN_VIDEO_FULL
from hv_generate_video import save_images_grid, save_videos_grid, resize_image_to_bucket, encode_to_latents
import logging
from utils import huggingface_utils, model_utils, train_utils, sai_model_spec
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
SS_METADATA_KEY_BASE_MODEL_VERSION = "ss_base_model_version"
SS_METADATA_KEY_NETWORK_MODULE = "ss_network_module"
SS_METADATA_KEY_NETWORK_DIM = "ss_network_dim"
SS_METADATA_KEY_NETWORK_ALPHA = "ss_network_alpha"
SS_METADATA_KEY_NETWORK_ARGS = "ss_network_args"
SS_METADATA_MINIMUM_KEYS = [
SS_METADATA_KEY_BASE_MODEL_VERSION,
SS_METADATA_KEY_NETWORK_MODULE,
SS_METADATA_KEY_NETWORK_DIM,
SS_METADATA_KEY_NETWORK_ALPHA,
SS_METADATA_KEY_NETWORK_ARGS,
]
def clean_memory_on_device(device: torch.device):
r"""
Clean memory on the specified device, will be called from training scripts.
"""
gc.collect()
# device may "cuda" or "cuda:0", so we need to check the type of device
if device.type == "cuda":
torch.cuda.empty_cache()
if device.type == "xpu":
torch.xpu.empty_cache()
if device.type == "mps":
torch.mps.empty_cache()
# for collate_fn: epoch and step is multiprocessing.Value
class collator_class:
def __init__(self, epoch, step, dataset):
self.current_epoch = epoch
self.current_step = step
self.dataset = dataset # not used if worker_info is not None, in case of multiprocessing
def __call__(self, examples):
worker_info = torch.utils.data.get_worker_info()
# worker_info is None in the main process
if worker_info is not None:
dataset = worker_info.dataset
else:
dataset = self.dataset
# set epoch and step
dataset.set_current_epoch(self.current_epoch.value)
dataset.set_current_step(self.current_step.value)
return examples[0]
def prepare_accelerator(args: argparse.Namespace) -> Accelerator:
"""
DeepSpeed is not supported in this script currently.
"""
if args.logging_dir is None:
logging_dir = None
else:
log_prefix = "" if args.log_prefix is None else args.log_prefix
logging_dir = args.logging_dir + "/" + log_prefix + time.strftime("%Y%m%d%H%M%S", time.localtime())
if args.log_with is None:
if logging_dir is not None:
log_with = "tensorboard"
else:
log_with = None
else:
log_with = args.log_with
if log_with in ["tensorboard", "all"]:
if logging_dir is None:
raise ValueError(
"logging_dir is required when log_with is tensorboard / Tensorboardを使う場合、logging_dirを指定してください"
)
if log_with in ["wandb", "all"]:
try:
import wandb
except ImportError:
raise ImportError("No wandb / wandb がインストールされていないようです")
if logging_dir is not None:
os.makedirs(logging_dir, exist_ok=True)
os.environ["WANDB_DIR"] = logging_dir
if args.wandb_api_key is not None:
wandb.login(key=args.wandb_api_key)
kwargs_handlers = [
(
InitProcessGroupKwargs(
backend="gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
init_method=(
"env://?use_libuv=False" if os.name == "nt" and Version(torch.__version__) >= Version("2.4.0") else None
),
timeout=timedelta(minutes=args.ddp_timeout) if args.ddp_timeout else None,
)
if torch.cuda.device_count() > 1
else None
),
(
DistributedDataParallelKwargs(
gradient_as_bucket_view=args.ddp_gradient_as_bucket_view, static_graph=args.ddp_static_graph
)
if args.ddp_gradient_as_bucket_view or args.ddp_static_graph
else None
),
]
kwargs_handlers = [i for i in kwargs_handlers if i is not None]
dynamo_plugin = None
if args.dynamo_backend.upper() != "NO":
dynamo_plugin = TorchDynamoPlugin(
backend=DynamoBackend(args.dynamo_backend.upper()),
mode=args.dynamo_mode,
fullgraph=args.dynamo_fullgraph,
dynamic=args.dynamo_dynamic,
)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=log_with,
project_dir=logging_dir,
dynamo_plugin=dynamo_plugin,
kwargs_handlers=kwargs_handlers,
)
print("accelerator device:", accelerator.device)
return accelerator
def line_to_prompt_dict(line: str) -> dict:
# subset of gen_img_diffusers
prompt_args = line.split(" --")
prompt_dict = {}
prompt_dict["prompt"] = prompt_args[0]
for parg in prompt_args:
try:
m = re.match(r"w (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["width"] = int(m.group(1))
continue
m = re.match(r"h (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["height"] = int(m.group(1))
continue
m = re.match(r"f (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["frame_count"] = int(m.group(1))
continue
m = re.match(r"d (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["seed"] = int(m.group(1))
continue
m = re.match(r"s (\d+)", parg, re.IGNORECASE)
if m: # steps
prompt_dict["sample_steps"] = max(1, min(1000, int(m.group(1))))
continue
m = re.match(r"g ([\d\.]+)", parg, re.IGNORECASE)
if m: # scale
prompt_dict["guidance_scale"] = float(m.group(1))
continue
m = re.match(r"fs ([\d\.]+)", parg, re.IGNORECASE)
if m: # scale
prompt_dict["discrete_flow_shift"] = float(m.group(1))
continue
m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
if m: # scale
prompt_dict["cfg_scale"] = float(m.group(1))
continue
m = re.match(r"n (.+)", parg, re.IGNORECASE)
if m: # negative prompt
prompt_dict["negative_prompt"] = m.group(1)
continue
m = re.match(r"i (.+)", parg, re.IGNORECASE)
if m: # negative prompt
prompt_dict["image_path"] = m.group(1)
continue
m = re.match(r"cn (.+)", parg, re.IGNORECASE)
if m:
prompt_dict["control_video_path"] = m.group(1)
continue
except ValueError as ex:
logger.error(f"Exception in parsing / 解析エラー: {parg}")
logger.error(ex)
return prompt_dict
def load_prompts(prompt_file: str) -> list[Dict]:
# read prompts
if prompt_file.endswith(".txt"):
with open(prompt_file, "r", encoding="utf-8") as f:
lines = f.readlines()
prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
elif prompt_file.endswith(".toml"):
with open(prompt_file, "r", encoding="utf-8") as f:
data = toml.load(f)
prompts = [dict(**data["prompt"], **subset) for subset in data["prompt"]["subset"]]
elif prompt_file.endswith(".json"):
with open(prompt_file, "r", encoding="utf-8") as f:
prompts = json.load(f)
# preprocess prompts
for i in range(len(prompts)):
prompt_dict = prompts[i]
if isinstance(prompt_dict, str):
prompt_dict = line_to_prompt_dict(prompt_dict)
prompts[i] = prompt_dict
assert isinstance(prompt_dict, dict)
# Adds an enumerator to the dict based on prompt position. Used later to name image files. Also cleanup of extra data in original prompt dict.
prompt_dict["enum"] = i
prompt_dict.pop("subset", None)
return prompts
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
"""Compute the density for sampling the timesteps when doing SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def get_sigmas(noise_scheduler, timesteps, device, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler.sigmas.to(device=device, dtype=dtype)
schedule_timesteps = noise_scheduler.timesteps.to(device)
timesteps = timesteps.to(device)
# if sum([(schedule_timesteps == t) for t in timesteps]) < len(timesteps):
if any([(schedule_timesteps == t).sum() == 0 for t in timesteps]):
# raise ValueError("Some timesteps are not in the schedule / 一部のtimestepsがスケジュールに含まれていません")
# round to nearest timestep
logger.warning("Some timesteps are not in the schedule / 一部のtimestepsがスケジュールに含まれていません")
step_indices = [torch.argmin(torch.abs(schedule_timesteps - t)).item() for t in timesteps]
else:
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def compute_loss_weighting_for_sd3(weighting_scheme: str, noise_scheduler, timesteps, device, dtype):
"""Computes loss weighting scheme for SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "sigma_sqrt" or weighting_scheme == "cosmap":
sigmas = get_sigmas(noise_scheduler, timesteps, device, n_dim=5, dtype=dtype)
if weighting_scheme == "sigma_sqrt":
weighting = (sigmas**-2.0).float()
else:
bot = 1 - 2 * sigmas + 2 * sigmas**2
weighting = 2 / (math.pi * bot)
else:
weighting = None # torch.ones_like(sigmas)
return weighting
def should_sample_images(args, steps, epoch=None):
if steps == 0:
if not args.sample_at_first:
return False
else:
should_sample_by_steps = args.sample_every_n_steps is not None and steps % args.sample_every_n_steps == 0
should_sample_by_epochs = (
args.sample_every_n_epochs is not None and epoch is not None and epoch % args.sample_every_n_epochs == 0
)
if not should_sample_by_steps and not should_sample_by_epochs:
return False
return True
class NetworkTrainer:
def __init__(self):
self.blocks_to_swap = None
# TODO 他のスクリプトと共通化する
def generate_step_logs(
self,
args: argparse.Namespace,
current_loss,
avr_loss,
lr_scheduler,
lr_descriptions,
optimizer=None,
keys_scaled=None,
mean_norm=None,
maximum_norm=None,
):
network_train_unet_only = True
logs = {"loss/current": current_loss, "loss/average": avr_loss}
if keys_scaled is not None:
logs["max_norm/keys_scaled"] = keys_scaled
logs["max_norm/average_key_norm"] = mean_norm
logs["max_norm/max_key_norm"] = maximum_norm
lrs = lr_scheduler.get_last_lr()
for i, lr in enumerate(lrs):
if lr_descriptions is not None:
lr_desc = lr_descriptions[i]
else:
idx = i - (0 if network_train_unet_only else -1)
if idx == -1:
lr_desc = "textencoder"
else:
if len(lrs) > 2:
lr_desc = f"group{idx}"
else:
lr_desc = "unet"
logs[f"lr/{lr_desc}"] = lr
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower():
# tracking d*lr value
logs[f"lr/d*lr/{lr_desc}"] = (
lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"]
)
if (
args.optimizer_type.lower().endswith("ProdigyPlusScheduleFree".lower()) and optimizer is not None
): # tracking d*lr value of unet.
logs["lr/d*lr"] = optimizer.param_groups[0]["d"] * optimizer.param_groups[0]["lr"]
else:
idx = 0
if not network_train_unet_only:
logs["lr/textencoder"] = float(lrs[0])
idx = 1
for i in range(idx, len(lrs)):
logs[f"lr/group{i}"] = float(lrs[i])
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower():
logs[f"lr/d*lr/group{i}"] = (
lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"]
)
if args.optimizer_type.lower().endswith("ProdigyPlusScheduleFree".lower()) and optimizer is not None:
logs[f"lr/d*lr/group{i}"] = optimizer.param_groups[i]["d"] * optimizer.param_groups[i]["lr"]
return logs
def get_optimizer(self, args, trainable_params: list[torch.nn.Parameter]) -> tuple[str, str, torch.optim.Optimizer]:
# adamw, adamw8bit, adafactor
optimizer_type = args.optimizer_type.lower()
# split optimizer_type and optimizer_args
optimizer_kwargs = {}
if args.optimizer_args is not None and len(args.optimizer_args) > 0:
for arg in args.optimizer_args:
key, value = arg.split("=")
value = ast.literal_eval(value)
optimizer_kwargs[key] = value
lr = args.learning_rate
optimizer = None
optimizer_class = None
if optimizer_type.endswith("8bit".lower()):
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsandbytes / bitsandbytesがインストールされていないようです")
if optimizer_type == "AdamW8bit".lower():
logger.info(f"use 8-bit AdamW optimizer | {optimizer_kwargs}")
optimizer_class = bnb.optim.AdamW8bit
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "Adafactor".lower():
# Adafactor: check relative_step and warmup_init
if "relative_step" not in optimizer_kwargs:
optimizer_kwargs["relative_step"] = True # default
if not optimizer_kwargs["relative_step"] and optimizer_kwargs.get("warmup_init", False):
logger.info(
f"set relative_step to True because warmup_init is True / warmup_initがTrueのためrelative_stepをTrueにします"
)
optimizer_kwargs["relative_step"] = True
logger.info(f"use Adafactor optimizer | {optimizer_kwargs}")
if optimizer_kwargs["relative_step"]:
logger.info(f"relative_step is true / relative_stepがtrueです")
if lr != 0.0:
logger.warning(f"learning rate is used as initial_lr / 指定したlearning rateはinitial_lrとして使用されます")
args.learning_rate = None
if args.lr_scheduler != "adafactor":
logger.info(f"use adafactor_scheduler / スケジューラにadafactor_schedulerを使用します")
args.lr_scheduler = f"adafactor:{lr}" # ちょっと微妙だけど
lr = None
else:
if args.max_grad_norm != 0.0:
logger.warning(
f"because max_grad_norm is set, clip_grad_norm is enabled. consider set to 0 / max_grad_normが設定されているためclip_grad_normが有効になります。0に設定して無効にしたほうがいいかもしれません"
)
if args.lr_scheduler != "constant_with_warmup":
logger.warning(f"constant_with_warmup will be good / スケジューラはconstant_with_warmupが良いかもしれません")
if optimizer_kwargs.get("clip_threshold", 1.0) != 1.0:
logger.warning(f"clip_threshold=1.0 will be good / clip_thresholdは1.0が良いかもしれません")
optimizer_class = transformers.optimization.Adafactor
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "AdamW".lower():
logger.info(f"use AdamW optimizer | {optimizer_kwargs}")
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
if optimizer is None:
# 任意のoptimizerを使う
case_sensitive_optimizer_type = args.optimizer_type # not lower
logger.info(f"use {case_sensitive_optimizer_type} | {optimizer_kwargs}")
if "." not in case_sensitive_optimizer_type: # from torch.optim
optimizer_module = torch.optim
else: # from other library
values = case_sensitive_optimizer_type.split(".")
optimizer_module = importlib.import_module(".".join(values[:-1]))
case_sensitive_optimizer_type = values[-1]
optimizer_class = getattr(optimizer_module, case_sensitive_optimizer_type)
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
# for logging
optimizer_name = optimizer_class.__module__ + "." + optimizer_class.__name__
optimizer_args = ",".join([f"{k}={v}" for k, v in optimizer_kwargs.items()])
# get train and eval functions
if hasattr(optimizer, "train") and callable(optimizer.train):
train_fn = optimizer.train
eval_fn = optimizer.eval
else:
train_fn = lambda: None
eval_fn = lambda: None
return optimizer_name, optimizer_args, optimizer, train_fn, eval_fn
def is_schedulefree_optimizer(self, optimizer: torch.optim.Optimizer, args: argparse.Namespace) -> bool:
return args.optimizer_type.lower().endswith("schedulefree".lower()) # or args.optimizer_schedulefree_wrapper
def get_dummy_scheduler(optimizer: torch.optim.Optimizer) -> Any:
# dummy scheduler for schedulefree optimizer. supports only empty step(), get_last_lr() and optimizers.
# this scheduler is used for logging only.
# this isn't be wrapped by accelerator because of this class is not a subclass of torch.optim.lr_scheduler._LRScheduler
class DummyScheduler:
def __init__(self, optimizer: torch.optim.Optimizer):
self.optimizer = optimizer
def step(self):
pass
def get_last_lr(self):
return [group["lr"] for group in self.optimizer.param_groups]
return DummyScheduler(optimizer)
def get_lr_scheduler(self, args, optimizer: torch.optim.Optimizer, num_processes: int):
"""
Unified API to get any scheduler from its name.
"""
# if schedulefree optimizer, return dummy scheduler
if self.is_schedulefree_optimizer(optimizer, args):
return self.get_dummy_scheduler(optimizer)
name = args.lr_scheduler
num_training_steps = args.max_train_steps * num_processes # * args.gradient_accumulation_steps
num_warmup_steps: Optional[int] = (
int(args.lr_warmup_steps * num_training_steps) if isinstance(args.lr_warmup_steps, float) else args.lr_warmup_steps
)
num_decay_steps: Optional[int] = (
int(args.lr_decay_steps * num_training_steps) if isinstance(args.lr_decay_steps, float) else args.lr_decay_steps
)
num_stable_steps = num_training_steps - num_warmup_steps - num_decay_steps
num_cycles = args.lr_scheduler_num_cycles
power = args.lr_scheduler_power
timescale = args.lr_scheduler_timescale
min_lr_ratio = args.lr_scheduler_min_lr_ratio
lr_scheduler_kwargs = {} # get custom lr_scheduler kwargs
if args.lr_scheduler_args is not None and len(args.lr_scheduler_args) > 0:
for arg in args.lr_scheduler_args:
key, value = arg.split("=")
value = ast.literal_eval(value)
lr_scheduler_kwargs[key] = value
def wrap_check_needless_num_warmup_steps(return_vals):
if num_warmup_steps is not None and num_warmup_steps != 0:
raise ValueError(f"{name} does not require `num_warmup_steps`. Set None or 0.")
return return_vals
# using any lr_scheduler from other library
if args.lr_scheduler_type:
lr_scheduler_type = args.lr_scheduler_type
logger.info(f"use {lr_scheduler_type} | {lr_scheduler_kwargs} as lr_scheduler")
if "." not in lr_scheduler_type: # default to use torch.optim
lr_scheduler_module = torch.optim.lr_scheduler
else:
values = lr_scheduler_type.split(".")
lr_scheduler_module = importlib.import_module(".".join(values[:-1]))
lr_scheduler_type = values[-1]
lr_scheduler_class = getattr(lr_scheduler_module, lr_scheduler_type)
lr_scheduler = lr_scheduler_class(optimizer, **lr_scheduler_kwargs)
return lr_scheduler
if name.startswith("adafactor"):
assert (
type(optimizer) == transformers.optimization.Adafactor
), f"adafactor scheduler must be used with Adafactor optimizer / adafactor schedulerはAdafactorオプティマイザと同時に使ってください"
initial_lr = float(name.split(":")[1])
# logger.info(f"adafactor scheduler init lr {initial_lr}")
return wrap_check_needless_num_warmup_steps(transformers.optimization.AdafactorSchedule(optimizer, initial_lr))
if name == DiffusersSchedulerType.PIECEWISE_CONSTANT.value:
name = DiffusersSchedulerType(name)
schedule_func = DIFFUSERS_TYPE_TO_SCHEDULER_FUNCTION[name]
return schedule_func(optimizer, **lr_scheduler_kwargs) # step_rules and last_epoch are given as kwargs
name = SchedulerType(name)
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return wrap_check_needless_num_warmup_steps(schedule_func(optimizer, **lr_scheduler_kwargs))
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, **lr_scheduler_kwargs)
if name == SchedulerType.INVERSE_SQRT:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, timescale=timescale, **lr_scheduler_kwargs)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
**lr_scheduler_kwargs,
)
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
power=power,
**lr_scheduler_kwargs,
)
if name == SchedulerType.COSINE_WITH_MIN_LR:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles / 2,
min_lr_rate=min_lr_ratio,
**lr_scheduler_kwargs,
)
# these schedulers do not require `num_decay_steps`
if name == SchedulerType.LINEAR or name == SchedulerType.COSINE:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
**lr_scheduler_kwargs,
)
# All other schedulers require `num_decay_steps`
if num_decay_steps is None:
raise ValueError(f"{name} requires `num_decay_steps`, please provide that argument.")
if name == SchedulerType.WARMUP_STABLE_DECAY:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_stable_steps=num_stable_steps,
num_decay_steps=num_decay_steps,
num_cycles=num_cycles / 2,
min_lr_ratio=min_lr_ratio if min_lr_ratio is not None else 0.0,
**lr_scheduler_kwargs,
)
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_decay_steps=num_decay_steps,
**lr_scheduler_kwargs,
)
def resume_from_local_or_hf_if_specified(self, accelerator: Accelerator, args: argparse.Namespace) -> bool:
if not args.resume:
return False
if not args.resume_from_huggingface:
logger.info(f"resume training from local state: {args.resume}")
accelerator.load_state(args.resume)
return True
logger.info(f"resume training from huggingface state: {args.resume}")
repo_id = args.resume.split("/")[0] + "/" + args.resume.split("/")[1]
path_in_repo = "/".join(args.resume.split("/")[2:])
revision = None
repo_type = None
if ":" in path_in_repo:
divided = path_in_repo.split(":")
if len(divided) == 2:
path_in_repo, revision = divided
repo_type = "model"
else:
path_in_repo, revision, repo_type = divided
logger.info(f"Downloading state from huggingface: {repo_id}/{path_in_repo}@{revision}")
list_files = huggingface_utils.list_dir(
repo_id=repo_id,
subfolder=path_in_repo,
revision=revision,
token=args.huggingface_token,
repo_type=repo_type,
)
async def download(filename) -> str:
def task():
return huggingface_hub.hf_hub_download(
repo_id=repo_id,
filename=filename,
revision=revision,
repo_type=repo_type,
token=args.huggingface_token,
)
return await asyncio.get_event_loop().run_in_executor(None, task)
loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*[download(filename=filename.rfilename) for filename in list_files]))
if len(results) == 0:
raise ValueError(
"No files found in the specified repo id/path/revision / 指定されたリポジトリID/パス/リビジョンにファイルが見つかりませんでした"
)
dirname = os.path.dirname(results[0])
accelerator.load_state(dirname)
return True
def get_noisy_model_input_and_timesteps(
self,
args: argparse.Namespace,
noise: torch.Tensor,
latents: torch.Tensor,
noise_scheduler: FlowMatchDiscreteScheduler,
device: torch.device,
dtype: torch.dtype,
):
batch_size = noise.shape[0]
if args.timestep_sampling == "uniform" or args.timestep_sampling == "sigmoid" or args.timestep_sampling == "shift":
if args.timestep_sampling == "uniform" or args.timestep_sampling == "sigmoid":
# Simple random t-based noise sampling
if args.timestep_sampling == "sigmoid":
t = torch.sigmoid(args.sigmoid_scale * torch.randn((batch_size,), device=device))
else:
t = torch.rand((batch_size,), device=device)
elif args.timestep_sampling == "shift":
shift = args.discrete_flow_shift
logits_norm = torch.randn(batch_size, device=device)
logits_norm = logits_norm * args.sigmoid_scale # larger scale for more uniform sampling
t = logits_norm.sigmoid()
t = (t * shift) / (1 + (shift - 1) * t)
t_min = args.min_timestep if args.min_timestep is not None else 0
t_max = args.max_timestep if args.max_timestep is not None else 1000.0
t_min /= 1000.0
t_max /= 1000.0
t = t * (t_max - t_min) + t_min # scale to [t_min, t_max], default [0, 1]
timesteps = t * 1000.0
t = t.view(-1, 1, 1, 1, 1)
noisy_model_input = (1 - t) * latents + t * noise
timesteps += 1 # 1 to 1000
else:
# Sample a random timestep for each image
# for weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=batch_size,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
# indices = (u * noise_scheduler.config.num_train_timesteps).long()
t_min = args.min_timestep if args.min_timestep is not None else 0
t_max = args.max_timestep if args.max_timestep is not None else 1000
indices = (u * (t_max - t_min) + t_min).long()
timesteps = noise_scheduler.timesteps[indices].to(device=device) # 1 to 1000
# Add noise according to flow matching.
sigmas = get_sigmas(noise_scheduler, timesteps, device, n_dim=latents.ndim, dtype=dtype)
noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents
return noisy_model_input, timesteps
def show_timesteps(self, args: argparse.Namespace):
N_TRY = 100000
BATCH_SIZE = 1000
CONSOLE_WIDTH = 64
N_TIMESTEPS_PER_LINE = 25
noise_scheduler = FlowMatchDiscreteScheduler(shift=args.discrete_flow_shift, reverse=True, solver="euler")
# print(f"Noise scheduler timesteps: {noise_scheduler.timesteps}")
latents = torch.zeros(BATCH_SIZE, 1, 1, 1, 1, dtype=torch.float16)
noise = torch.ones_like(latents)
# sample timesteps
sampled_timesteps = [0] * noise_scheduler.config.num_train_timesteps
for i in tqdm(range(N_TRY // BATCH_SIZE)):
# we use noise=1, so retured noisy_model_input is same as timestep, because `noisy_model_input = (1 - t) * latents + t * noise`
actual_timesteps, _ = self.get_noisy_model_input_and_timesteps(
args, noise, latents, noise_scheduler, "cpu", torch.float16
)
actual_timesteps = actual_timesteps[:, 0, 0, 0, 0] * 1000
for t in actual_timesteps:
t = int(t.item())
sampled_timesteps[t] += 1
# sample weighting
sampled_weighting = [0] * noise_scheduler.config.num_train_timesteps
for i in tqdm(range(len(sampled_weighting))):
timesteps = torch.tensor([i + 1], device="cpu")
weighting = compute_loss_weighting_for_sd3(args.weighting_scheme, noise_scheduler, timesteps, "cpu", torch.float16)
if weighting is None:
weighting = torch.tensor(1.0, device="cpu")
elif torch.isinf(weighting).any():
weighting = torch.tensor(1.0, device="cpu")
sampled_weighting[i] = weighting.item()
# show results
if args.show_timesteps == "image":
# show timesteps with matplotlib
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.bar(range(len(sampled_timesteps)), sampled_timesteps, width=1.0)
plt.title("Sampled timesteps")
plt.xlabel("Timestep")
plt.ylabel("Count")
plt.subplot(1, 2, 2)
plt.bar(range(len(sampled_weighting)), sampled_weighting, width=1.0)
plt.title("Sampled loss weighting")
plt.xlabel("Timestep")
plt.ylabel("Weighting")
plt.tight_layout()
plt.show()
else:
sampled_timesteps = np.array(sampled_timesteps)
sampled_weighting = np.array(sampled_weighting)
# average per line
sampled_timesteps = sampled_timesteps.reshape(-1, N_TIMESTEPS_PER_LINE).mean(axis=1)
sampled_weighting = sampled_weighting.reshape(-1, N_TIMESTEPS_PER_LINE).mean(axis=1)
max_count = max(sampled_timesteps)
print(f"Sampled timesteps: max count={max_count}")
for i, t in enumerate(sampled_timesteps):
line = f"{(i)*N_TIMESTEPS_PER_LINE:4d}-{(i+1)*N_TIMESTEPS_PER_LINE-1:4d}: "
line += "#" * int(t / max_count * CONSOLE_WIDTH)
print(line)
max_weighting = max(sampled_weighting)
print(f"Sampled loss weighting: max weighting={max_weighting}")
for i, w in enumerate(sampled_weighting):
line = f"{i*N_TIMESTEPS_PER_LINE:4d}-{(i+1)*N_TIMESTEPS_PER_LINE-1:4d}: {w:8.2f} "
line += "#" * int(w / max_weighting * CONSOLE_WIDTH)
print(line)
def sample_images(self, accelerator, args, epoch, steps, vae, transformer, sample_parameters, dit_dtype):
"""architecture independent sample images"""
if not should_sample_images(args, steps, epoch):
return
logger.info("")
logger.info(f"generating sample images at step / サンプル画像生成 ステップ: {steps}")
if sample_parameters is None:
logger.error(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}")
return
distributed_state = PartialState() # for multi gpu distributed inference. this is a singleton, so it's safe to use it here
# Use the unwrapped model
transformer = accelerator.unwrap_model(transformer)
transformer.switch_block_swap_for_inference()
# Create a directory to save the samples
save_dir = args.output_dir + "/sample"
os.makedirs(save_dir, exist_ok=True)
# save random state to restore later
rng_state = torch.get_rng_state()
cuda_rng_state = None
try:
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
except Exception:
pass
if distributed_state.num_processes <= 1:
# If only one device is available, just use the original prompt list. We don't need to care about the distribution of prompts.
with torch.no_grad(), accelerator.autocast():
for sample_parameter in sample_parameters:
self.sample_image_inference(
accelerator, args, transformer, dit_dtype, vae, save_dir, sample_parameter, epoch, steps
)
clean_memory_on_device(accelerator.device)
else:
# Creating list with N elements, where each element is a list of prompt_dicts, and N is the number of processes available (number of devices available)
# prompt_dicts are assigned to lists based on order of processes, to attempt to time the image creation time to match enum order. Probably only works when steps and sampler are identical.
per_process_params = [] # list of lists
for i in range(distributed_state.num_processes):
per_process_params.append(sample_parameters[i :: distributed_state.num_processes])
with torch.no_grad():
with distributed_state.split_between_processes(per_process_params) as sample_parameter_lists:
for sample_parameter in sample_parameter_lists[0]:
self.sample_image_inference(
accelerator, args, transformer, dit_dtype, vae, save_dir, sample_parameter, epoch, steps
)
clean_memory_on_device(accelerator.device)
torch.set_rng_state(rng_state)
if cuda_rng_state is not None:
torch.cuda.set_rng_state(cuda_rng_state)
transformer.switch_block_swap_for_training()
clean_memory_on_device(accelerator.device)
def sample_image_inference(self, accelerator, args, transformer, dit_dtype, vae, save_dir, sample_parameter, epoch, steps):
"""architecture independent sample images"""
sample_steps = sample_parameter.get("sample_steps", 20)
width = sample_parameter.get("width", 256) # make smaller for faster and memory saving inference
height = sample_parameter.get("height", 256)
frame_count = sample_parameter.get("frame_count", 1)
guidance_scale = sample_parameter.get("guidance_scale", self.default_guidance_scale)
discrete_flow_shift = sample_parameter.get("discrete_flow_shift", 14.5)
seed = sample_parameter.get("seed")
prompt: str = sample_parameter.get("prompt", "")
cfg_scale = sample_parameter.get("cfg_scale", None) # None for architecture default
negative_prompt = sample_parameter.get("negative_prompt", None)
frame_count = (frame_count - 1) // 4 * 4 + 1 # 1, 5, 9, 13, ... For HunyuanVideo and Wan2.1
if self.i2v_training:
image_path = sample_parameter.get("image_path", None)
if image_path is None:
logger.error("No image_path for i2v model / i2vモデルのサンプル画像生成にはimage_pathが必要です")
return
else:
image_path = None
if self.control_training:
control_video_path = sample_parameter.get("control_video_path", None)
if control_video_path is None:
logger.error(
"No control_video_path for control model / controlモデルのサンプル画像生成にはcontrol_video_pathが必要です"
)
return
else:
control_video_path = None
device = accelerator.device
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
generator = torch.Generator(device=device).manual_seed(seed)
else:
# True random sample image generation
torch.seed()
torch.cuda.seed()
generator = torch.Generator(device=device).manual_seed(torch.initial_seed())
logger.info(f"prompt: {prompt}")
logger.info(f"height: {height}")
logger.info(f"width: {width}")
logger.info(f"frame count: {frame_count}")
logger.info(f"sample steps: {sample_steps}")
logger.info(f"guidance scale: {guidance_scale}")
logger.info(f"discrete flow shift: {discrete_flow_shift}")
if seed is not None:
logger.info(f"seed: {seed}")
do_classifier_free_guidance = False
if negative_prompt is not None:
do_classifier_free_guidance = True
logger.info(f"negative prompt: {negative_prompt}")
logger.info(f"cfg scale: {cfg_scale}")
if self.i2v_training:
logger.info(f"image path: {image_path}")
if self.control_training:
logger.info(f"control video path: {control_video_path}")
# inference: architecture dependent
video = self.do_inference(
accelerator,
args,
sample_parameter,
vae,
dit_dtype,
transformer,
discrete_flow_shift,
sample_steps,
width,
height,
frame_count,
generator,
do_classifier_free_guidance,
guidance_scale,
cfg_scale,
image_path=image_path,
control_video_path=control_video_path,
)
# Save video
if video is None:
logger.error("No video generated / 生成された動画がありません")
return
ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}"
seed_suffix = "" if seed is None else f"_{seed}"
prompt_idx = sample_parameter.get("enum", 0)
save_path = (
f"{'' if args.output_name is None else args.output_name + '_'}{num_suffix}_{prompt_idx:02d}_{ts_str}{seed_suffix}"
)
if video.shape[2] == 1:
save_images_grid(video, save_dir, save_path, create_subdir=False)
else:
save_videos_grid(video, os.path.join(save_dir, save_path) + ".mp4")
# Move models back to initial state
vae.to("cpu")
clean_memory_on_device(device)
# region model specific
@property
def architecture(self) -> str:
return ARCHITECTURE_HUNYUAN_VIDEO
@property
def architecture_full_name(self) -> str:
return ARCHITECTURE_HUNYUAN_VIDEO_FULL
def handle_model_specific_args(self, args: argparse.Namespace):
self.pos_embed_cache = {}
self._i2v_training = args.dit_in_channels == 32 # may be changed in the future
if self._i2v_training:
logger.info("I2V training mode")
self._control_training = False # HunyuanVideo does not support control training yet
self.default_guidance_scale = 6.0
@property
def i2v_training(self) -> bool:
return self._i2v_training
@property
def control_training(self) -> bool:
return self._control_training
def process_sample_prompts(
self,
args: argparse.Namespace,
accelerator: Accelerator,
sample_prompts: str,
):
text_encoder1, text_encoder2, fp8_llm = args.text_encoder1, args.text_encoder2, args.fp8_llm
logger.info(f"cache Text Encoder outputs for sample prompt: {sample_prompts}")
prompts = load_prompts(sample_prompts)
def encode_for_text_encoder(text_encoder, is_llm=True):
sample_prompts_te_outputs = {} # (prompt) -> (embeds, mask)
with accelerator.autocast(), torch.no_grad():
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", None)]:
if p is None:
continue
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
data_type = "video"
text_inputs = text_encoder.text2tokens(p, data_type=data_type)
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
sample_prompts_te_outputs[p] = (prompt_outputs.hidden_state, prompt_outputs.attention_mask)
return sample_prompts_te_outputs
# Load Text Encoder 1 and encode
text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else model_utils.str_to_dtype(args.text_encoder_dtype)
logger.info(f"loading text encoder 1: {text_encoder1}")
text_encoder_1 = text_encoder_module.load_text_encoder_1(text_encoder1, accelerator.device, fp8_llm, text_encoder_dtype)
logger.info("encoding with Text Encoder 1")
te_outputs_1 = encode_for_text_encoder(text_encoder_1)
del text_encoder_1
# Load Text Encoder 2 and encode
logger.info(f"loading text encoder 2: {text_encoder2}")
text_encoder_2 = text_encoder_module.load_text_encoder_2(text_encoder2, accelerator.device, text_encoder_dtype)
logger.info("encoding with Text Encoder 2")
te_outputs_2 = encode_for_text_encoder(text_encoder_2, is_llm=False)
del text_encoder_2
# prepare sample parameters
sample_parameters = []
for prompt_dict in prompts:
prompt_dict_copy = prompt_dict.copy()
p = prompt_dict.get("prompt", "")
prompt_dict_copy["llm_embeds"] = te_outputs_1[p][0]
prompt_dict_copy["llm_mask"] = te_outputs_1[p][1]
prompt_dict_copy["clipL_embeds"] = te_outputs_2[p][0]
prompt_dict_copy["clipL_mask"] = te_outputs_2[p][1]
p = prompt_dict.get("negative_prompt", None)
if p is not None:
prompt_dict_copy["negative_llm_embeds"] = te_outputs_1[p][0]
prompt_dict_copy["negative_llm_mask"] = te_outputs_1[p][1]
prompt_dict_copy["negative_clipL_embeds"] = te_outputs_2[p][0]
prompt_dict_copy["negative_clipL_mask"] = te_outputs_2[p][1]
sample_parameters.append(prompt_dict_copy)
clean_memory_on_device(accelerator.device)
return sample_parameters
def do_inference(
self,
accelerator,
args,
sample_parameter,
vae,
dit_dtype,
transformer,
discrete_flow_shift,
sample_steps,
width,
height,
frame_count,
generator,
do_classifier_free_guidance,
guidance_scale,
cfg_scale,
image_path=None,
control_video_path=None,
):
"""architecture dependent inference"""
device = accelerator.device
if cfg_scale is None:
cfg_scale = 1.0
do_classifier_free_guidance = do_classifier_free_guidance and cfg_scale != 1.0
# Prepare scheduler for each prompt
scheduler = FlowMatchDiscreteScheduler(shift=discrete_flow_shift, reverse=True, solver="euler")
# Number of inference steps for sampling
scheduler.set_timesteps(sample_steps, device=device)
timesteps = scheduler.timesteps
# Calculate latent video length based on VAE version
if "884" in VAE_VER:
latent_video_length = (frame_count - 1) // 4 + 1
elif "888" in VAE_VER:
latent_video_length = (frame_count - 1) // 8 + 1
else:
latent_video_length = frame_count
# Get embeddings
prompt_embeds = sample_parameter["llm_embeds"].to(device=device, dtype=dit_dtype)
prompt_mask = sample_parameter["llm_mask"].to(device=device)
prompt_embeds_2 = sample_parameter["clipL_embeds"].to(device=device, dtype=dit_dtype)
if do_classifier_free_guidance:
negative_prompt_embeds = sample_parameter["negative_llm_embeds"].to(device=device, dtype=dit_dtype)
negative_prompt_mask = sample_parameter["negative_llm_mask"].to(device=device)
negative_prompt_embeds_2 = sample_parameter["negative_clipL_embeds"].to(device=device, dtype=dit_dtype)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
prompt_mask = torch.cat([negative_prompt_mask, prompt_mask], dim=0)
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2], dim=0)
num_channels_latents = 16 # transformer.config.in_channels
vae_scale_factor = 2 ** (4 - 1) # Assuming 4 VAE blocks
# Initialize latents
shape_or_frame = (
1,
num_channels_latents,
1,
height // vae_scale_factor,
width // vae_scale_factor,
)
latents = []
for _ in range(latent_video_length):
latents.append(torch.randn(shape_or_frame, generator=generator, device=device, dtype=dit_dtype))
latents = torch.cat(latents, dim=2)
if self.i2v_training:
# Move VAE to the appropriate device for sampling
vae.to(device)
vae.eval()
image = Image.open(image_path)
image = resize_image_to_bucket(image, (width, height)) # returns a numpy array
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).unsqueeze(2).float() # 1, C, 1, H, W
image = image / 255.0
logger.info(f"Encoding image to latents")
image_latents = encode_to_latents(args, image, device) # 1, C, 1, H, W
image_latents = image_latents.to(device=device, dtype=dit_dtype)
vae.to("cpu")
clean_memory_on_device(device)
zero_latents = torch.zeros_like(latents)
zero_latents[:, :, :1, :, :] = image_latents
image_latents = zero_latents
else:
image_latents = None
# Guidance scale
guidance_expand = torch.tensor([guidance_scale * 1000.0], dtype=torch.float32, device=device).to(dit_dtype)
# Get rotary positional embeddings
freqs_cos, freqs_sin = get_rotary_pos_embed_by_shape(transformer, latents.shape[2:])
freqs_cos = freqs_cos.to(device=device, dtype=dit_dtype)
freqs_sin = freqs_sin.to(device=device, dtype=dit_dtype)
# Wrap the inner loop with tqdm to track progress over timesteps
prompt_idx = sample_parameter.get("enum", 0)
with torch.no_grad():
for i, t in enumerate(tqdm(timesteps, desc=f"Sampling timesteps for prompt {prompt_idx+1}")):
latents_input = scheduler.scale_model_input(latents, t)
if do_classifier_free_guidance:
latents_input = torch.cat([latents_input, latents_input], dim=0) # 2, C, F, H, W
if image_latents is not None:
latents_image_input = (
image_latents if not do_classifier_free_guidance else torch.cat([image_latents, image_latents], dim=0)
)
latents_input = torch.cat([latents_input, latents_image_input], dim=1) # 1 or 2, C*2, F, H, W
noise_pred = transformer(
latents_input,
t.repeat(latents.shape[0]).to(device=device, dtype=dit_dtype),
text_states=prompt_embeds,
text_mask=prompt_mask,
text_states_2=prompt_embeds_2,
freqs_cos=freqs_cos,
freqs_sin=freqs_sin,
guidance=guidance_expand,
return_dict=True,
)["x"]
# perform classifier free guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + cfg_scale * (noise_pred_cond - noise_pred_uncond)
# Compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
# Move VAE to the appropriate device for sampling
vae.to(device)
vae.eval()
# Decode latents to video
if hasattr(vae.config, "shift_factor") and vae.config.shift_factor:
latents = latents / vae.config.scaling_factor + vae.config.shift_factor
else:
latents = latents / vae.config.scaling_factor
latents = latents.to(device=device, dtype=vae.dtype)
with torch.no_grad():
video = vae.decode(latents, return_dict=False)[0]
video = (video / 2 + 0.5).clamp(0, 1)
video = video.cpu().float()
return video
def load_vae(self, args: argparse.Namespace, vae_dtype: torch.dtype, vae_path: str):
vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device="cpu", vae_path=vae_path)
if args.vae_chunk_size is not None:
vae.set_chunk_size_for_causal_conv_3d(args.vae_chunk_size)
logger.info(f"Set chunk_size to {args.vae_chunk_size} for CausalConv3d in VAE")
if args.vae_spatial_tile_sample_min_size is not None:
vae.enable_spatial_tiling(True)
vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size
vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8
elif args.vae_tiling:
vae.enable_spatial_tiling(True)
return vae
def load_transformer(
self,
accelerator: Accelerator,
args: argparse.Namespace,
dit_path: str,
attn_mode: str,
split_attn: bool,
loading_device: str,
dit_weight_dtype: Optional[torch.dtype],
):
transformer = load_transformer(dit_path, attn_mode, split_attn, loading_device, dit_weight_dtype, args.dit_in_channels)
if args.img_in_txt_in_offloading:
logger.info("Enable offloading img_in and txt_in to CPU")
transformer.enable_img_in_txt_in_offloading()
return transformer
def scale_shift_latents(self, latents):
latents = latents * vae_module.SCALING_FACTOR
return latents
def call_dit(
self,
args: argparse.Namespace,
accelerator: Accelerator,
transformer_arg,
latents: torch.Tensor,
batch: dict[str, torch.Tensor],
noise: torch.Tensor,
noisy_model_input: torch.Tensor,
timesteps: torch.Tensor,
network_dtype: torch.dtype,
):
transformer: HYVideoDiffusionTransformer = transformer_arg
bsz = latents.shape[0]
# I2V training
if self.i2v_training:
image_latents = torch.zeros_like(latents)
image_latents[:, :, :1, :, :] = latents[:, :, :1, :, :]
noisy_model_input = torch.cat([noisy_model_input, image_latents], dim=1) # concat along channel dim
# ensure guidance_scale in args is float
guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device) # , dtype=dit_dtype)
# ensure the hidden state will require grad
if args.gradient_checkpointing:
noisy_model_input.requires_grad_(True)
guidance_vec.requires_grad_(True)
pos_emb_shape = latents.shape[1:]
if pos_emb_shape not in self.pos_embed_cache:
freqs_cos, freqs_sin = get_rotary_pos_embed_by_shape(transformer, latents.shape[2:])
# freqs_cos = freqs_cos.to(device=accelerator.device, dtype=dit_dtype)
# freqs_sin = freqs_sin.to(device=accelerator.device, dtype=dit_dtype)
self.pos_embed_cache[pos_emb_shape] = (freqs_cos, freqs_sin)
else:
freqs_cos, freqs_sin = self.pos_embed_cache[pos_emb_shape]
# call DiT
latents = latents.to(device=accelerator.device, dtype=network_dtype)
noisy_model_input = noisy_model_input.to(device=accelerator.device, dtype=network_dtype)
with accelerator.autocast():
model_pred = transformer(
noisy_model_input,
timesteps,
text_states=batch["llm"],
text_mask=batch["llm_mask"],
text_states_2=batch["clipL"],
freqs_cos=freqs_cos,
freqs_sin=freqs_sin,
guidance=guidance_vec,
return_dict=False,
)
# flow matching loss
target = noise - latents
return model_pred, target
# endregion model specific
def train(self, args):
# check required arguments
if args.dataset_config is None:
raise ValueError("dataset_config is required / dataset_configが必要です")
if args.dit is None:
raise ValueError("path to DiT model is required / DiTモデルのパスが必要です")
assert not args.fp8_scaled or args.fp8_base, "fp8_scaled requires fp8_base / fp8_scaledはfp8_baseが必要です"
# check model specific arguments
self.handle_model_specific_args(args)
# show timesteps for debugging
if args.show_timesteps:
self.show_timesteps(args)
return
session_id = random.randint(0, 2**32)
training_started_at = time.time()
# setup_logging(args, reset=True)
if args.seed is None:
args.seed = random.randint(0, 2**32)
set_seed(args.seed)
# Load dataset config
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_utils.load_user_config(args.dataset_config)
blueprint = blueprint_generator.generate(user_config, args, architecture=self.architecture)
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group, training=True)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = collator_class(current_epoch, current_step, ds_for_collator)
# prepare accelerator
logger.info("preparing accelerator")
accelerator = prepare_accelerator(args)
is_main_process = accelerator.is_main_process
# prepare dtype
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# HunyuanVideo: bfloat16 or float16, Wan2.1: bfloat16
dit_dtype = torch.bfloat16 if args.dit_dtype is None else model_utils.str_to_dtype(args.dit_dtype)
dit_weight_dtype = (None if args.fp8_scaled else torch.float8_e4m3fn) if args.fp8_base else dit_dtype
logger.info(f"DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}")
# get embedding for sampling images
vae_dtype = torch.float16 if args.vae_dtype is None else model_utils.str_to_dtype(args.vae_dtype)
sample_parameters = None
vae = None
if args.sample_prompts:
sample_parameters = self.process_sample_prompts(args, accelerator, args.sample_prompts)
# Load VAE model for sampling images: VAE is loaded to cpu to save gpu memory
vae = self.load_vae(args, vae_dtype=vae_dtype, vae_path=args.vae)
vae.requires_grad_(False)
vae.eval()
# load DiT model
blocks_to_swap = args.blocks_to_swap if args.blocks_to_swap else 0
self.blocks_to_swap = blocks_to_swap
loading_device = "cpu" if blocks_to_swap > 0 else accelerator.device
logger.info(f"Loading DiT model from {args.dit}")
if args.sdpa:
attn_mode = "torch"
elif args.flash_attn:
attn_mode = "flash"
elif args.sage_attn:
attn_mode = "sageattn"
elif args.xformers:
attn_mode = "xformers"
elif args.flash3:
attn_mode = "flash3"
else:
raise ValueError(
f"either --sdpa, --flash-attn, --flash3, --sage-attn or --xformers must be specified / --sdpa, --flash-attn, --flash3, --sage-attn, --xformersのいずれかを指定してください"
)
transformer = self.load_transformer(
accelerator, args, args.dit, attn_mode, args.split_attn, loading_device, dit_weight_dtype
)
transformer.eval()
transformer.requires_grad_(False)
if blocks_to_swap > 0:
logger.info(f"enable swap {blocks_to_swap} blocks to CPU from device: {accelerator.device}")
transformer.enable_block_swap(blocks_to_swap, accelerator.device, supports_backward=True)
transformer.move_to_device_except_swap_blocks(accelerator.device)
# load network model for differential training
sys.path.append(os.path.dirname(__file__))
accelerator.print("import network module:", args.network_module)
network_module: lora_module = importlib.import_module(args.network_module) # actual module may be different
if args.base_weights is not None:
# if base_weights is specified, merge the weights to DiT model
for i, weight_path in enumerate(args.base_weights):
if args.base_weights_multiplier is None or len(args.base_weights_multiplier) <= i:
multiplier = 1.0
else:
multiplier = args.base_weights_multiplier[i]
accelerator.print(f"merging module: {weight_path} with multiplier {multiplier}")
weights_sd = load_file(weight_path)
module = network_module.create_arch_network_from_weights(
multiplier, weights_sd, unet=transformer, for_inference=True
)
module.merge_to(None, transformer, weights_sd, weight_dtype, "cpu")
accelerator.print(f"all weights merged: {', '.join(args.base_weights)}")
# prepare network
net_kwargs = {}
if args.network_args is not None:
for net_arg in args.network_args:
key, value = net_arg.split("=")
net_kwargs[key] = value
if args.dim_from_weights:
logger.info(f"Loading network from weights: {args.dim_from_weights}")
weights_sd = load_file(args.dim_from_weights)
network, _ = network_module.create_arch_network_from_weights(1, weights_sd, unet=transformer)
else:
# We use the name create_arch_network for compatibility with LyCORIS
if hasattr(network_module, "create_arch_network"):
network = network_module.create_arch_network(
1.0,
args.network_dim,
args.network_alpha,
vae,
None,
transformer,
neuron_dropout=args.network_dropout,
**net_kwargs,
)
else:
# LyCORIS compatibility
network = network_module.create_network(
1.0,
args.network_dim,
args.network_alpha,
vae,
None,
transformer,
**net_kwargs,
)
if network is None:
return
if hasattr(network_module, "prepare_network"):
network.prepare_network(args)
# apply network to DiT
network.apply_to(None, transformer, apply_text_encoder=False, apply_unet=True)
if args.network_weights is not None:
# FIXME consider alpha of weights: this assumes that the alpha is not changed
info = network.load_weights(args.network_weights)
accelerator.print(f"load network weights from {args.network_weights}: {info}")
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
network.enable_gradient_checkpointing() # may have no effect
# prepare optimizer, data loader etc.
accelerator.print("prepare optimizer, data loader etc.")
trainable_params, lr_descriptions = network.prepare_optimizer_params(unet_lr=args.learning_rate)
optimizer_name, optimizer_args, optimizer, optimizer_train_fn, optimizer_eval_fn = self.get_optimizer(
args, trainable_params
)
# prepare dataloader
# num workers for data loader: if 0, persistent_workers is not available
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# calculate max_train_steps
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
accelerator.print(
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
)
# send max_train_steps to train_dataset_group
train_dataset_group.set_max_train_steps(args.max_train_steps)
# prepare lr_scheduler
lr_scheduler = self.get_lr_scheduler(args, optimizer, accelerator.num_processes)
# prepare training model. accelerator does some magic here
# experimental feature: train the model with gradients in fp16/bf16
network_dtype = torch.float32
args.full_fp16 = args.full_bf16 = False # temporary disabled because stochastic rounding is not supported yet
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
accelerator.print("enable full fp16 training.")
network_dtype = weight_dtype
network.to(network_dtype)
elif args.full_bf16:
assert (
args.mixed_precision == "bf16"
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
accelerator.print("enable full bf16 training.")
network_dtype = weight_dtype
network.to(network_dtype)
if dit_weight_dtype != dit_dtype and dit_weight_dtype is not None:
logger.info(f"casting model to {dit_weight_dtype}")
transformer.to(dit_weight_dtype)
if blocks_to_swap > 0:
transformer = accelerator.prepare(transformer, device_placement=[not blocks_to_swap > 0])
accelerator.unwrap_model(transformer).move_to_device_except_swap_blocks(accelerator.device) # reduce peak memory usage
accelerator.unwrap_model(transformer).prepare_block_swap_before_forward()
else:
transformer = accelerator.prepare(transformer)
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(network, optimizer, train_dataloader, lr_scheduler)
training_model = network
if args.gradient_checkpointing:
transformer.train()
else:
transformer.eval()
accelerator.unwrap_model(network).prepare_grad_etc(transformer)
if args.full_fp16:
# patch accelerator for fp16 training
# def patch_accelerator_for_fp16_training(accelerator):
org_unscale_grads = accelerator.scaler._unscale_grads_
def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
return org_unscale_grads(optimizer, inv_scale, found_inf, True)
accelerator.scaler._unscale_grads_ = _unscale_grads_replacer
# before resuming make hook for saving/loading to save/load the network weights only
def save_model_hook(models, weights, output_dir):
# pop weights of other models than network to save only network weights
# only main process or deepspeed https://github.com/huggingface/diffusers/issues/2606
if accelerator.is_main_process: # or args.deepspeed:
remove_indices = []
for i, model in enumerate(models):
if not isinstance(model, type(accelerator.unwrap_model(network))):
remove_indices.append(i)
for i in reversed(remove_indices):
if len(weights) > i:
weights.pop(i)
# print(f"save model hook: {len(weights)} weights will be saved")
def load_model_hook(models, input_dir):
# remove models except network
remove_indices = []
for i, model in enumerate(models):
if not isinstance(model, type(accelerator.unwrap_model(network))):
remove_indices.append(i)
for i in reversed(remove_indices):
models.pop(i)
# print(f"load model hook: {len(models)} models will be loaded")
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# resume from local or huggingface. accelerator.step is set
self.resume_from_local_or_hf_if_specified(accelerator, args) # accelerator.load_state(args.resume)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# 学習する
# total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
accelerator.print("running training / 学習開始")
accelerator.print(f" num train items / 学習画像、動画数: {train_dataset_group.num_train_items}")
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
accelerator.print(
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
)
# accelerator.print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
# TODO refactor metadata creation and move to util
metadata = {
"ss_" "ss_session_id": session_id, # random integer indicating which group of epochs the model came from
"ss_training_started_at": training_started_at, # unix timestamp
"ss_output_name": args.output_name,
"ss_learning_rate": args.learning_rate,
"ss_num_train_items": train_dataset_group.num_train_items,
"ss_num_batches_per_epoch": len(train_dataloader),
"ss_num_epochs": num_train_epochs,
"ss_gradient_checkpointing": args.gradient_checkpointing,
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
"ss_max_train_steps": args.max_train_steps,
"ss_lr_warmup_steps": args.lr_warmup_steps,
"ss_lr_scheduler": args.lr_scheduler,
SS_METADATA_KEY_BASE_MODEL_VERSION: self.architecture_full_name,
# "ss_network_module": args.network_module,
# "ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim
# "ss_network_alpha": args.network_alpha, # some networks may not have alpha
SS_METADATA_KEY_NETWORK_MODULE: args.network_module,
SS_METADATA_KEY_NETWORK_DIM: args.network_dim,
SS_METADATA_KEY_NETWORK_ALPHA: args.network_alpha,
"ss_network_dropout": args.network_dropout, # some networks may not have dropout
"ss_mixed_precision": args.mixed_precision,
"ss_seed": args.seed,
"ss_training_comment": args.training_comment, # will not be updated after training
# "ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(),
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""),
"ss_max_grad_norm": args.max_grad_norm,
"ss_fp8_base": bool(args.fp8_base),
# "ss_fp8_llm": bool(args.fp8_llm), # remove this because this is only for HuanyuanVideo TODO set architecure dependent metadata
"ss_full_fp16": bool(args.full_fp16),
"ss_full_bf16": bool(args.full_bf16),
"ss_weighting_scheme": args.weighting_scheme,
"ss_logit_mean": args.logit_mean,
"ss_logit_std": args.logit_std,
"ss_mode_scale": args.mode_scale,
"ss_guidance_scale": args.guidance_scale,
"ss_timestep_sampling": args.timestep_sampling,
"ss_sigmoid_scale": args.sigmoid_scale,
"ss_discrete_flow_shift": args.discrete_flow_shift,
}
datasets_metadata = []
# tag_frequency = {} # merge tag frequency for metadata editor # TODO support tag frequency
for dataset in train_dataset_group.datasets:
dataset_metadata = dataset.get_metadata()
datasets_metadata.append(dataset_metadata)
metadata["ss_datasets"] = json.dumps(datasets_metadata)
# add extra args
if args.network_args:
# metadata["ss_network_args"] = json.dumps(net_kwargs)
metadata[SS_METADATA_KEY_NETWORK_ARGS] = json.dumps(net_kwargs)
# model name and hash
# calculate hash takes time, so we omit it for now
if args.dit is not None:
# logger.info(f"calculate hash for DiT model: {args.dit}")
logger.info(f"set DiT model name for metadata: {args.dit}")
sd_model_name = args.dit
if os.path.exists(sd_model_name):
# metadata["ss_sd_model_hash"] = model_utils.model_hash(sd_model_name)
# metadata["ss_new_sd_model_hash"] = model_utils.calculate_sha256(sd_model_name)
sd_model_name = os.path.basename(sd_model_name)
metadata["ss_sd_model_name"] = sd_model_name
if args.vae is not None:
# logger.info(f"calculate hash for VAE model: {args.vae}")
logger.info(f"set VAE model name for metadata: {args.vae}")
vae_name = args.vae
if os.path.exists(vae_name):
# metadata["ss_vae_hash"] = model_utils.model_hash(vae_name)
# metadata["ss_new_vae_hash"] = model_utils.calculate_sha256(vae_name)
vae_name = os.path.basename(vae_name)
metadata["ss_vae_name"] = vae_name
metadata = {k: str(v) for k, v in metadata.items()}
# make minimum metadata for filtering
minimum_metadata = {}
for key in SS_METADATA_MINIMUM_KEYS:
if key in metadata:
minimum_metadata[key] = metadata[key]
if accelerator.is_main_process:
init_kwargs = {}
if args.wandb_run_name:
init_kwargs["wandb"] = {"name": args.wandb_run_name}
if args.log_tracker_config is not None:
init_kwargs = toml.load(args.log_tracker_config)
accelerator.init_trackers(
"network_train" if args.log_tracker_name is None else args.log_tracker_name,
config=train_utils.get_sanitized_config_or_none(args),
init_kwargs=init_kwargs,
)
# TODO skip until initial step
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
epoch_to_start = 0
global_step = 0
noise_scheduler = FlowMatchDiscreteScheduler(shift=args.discrete_flow_shift, reverse=True, solver="euler")
loss_recorder = train_utils.LossRecorder()
del train_dataset_group
# function for saving/removing
save_dtype = dit_dtype
def save_model(ckpt_name: str, unwrapped_nw, steps, epoch_no, force_sync_upload=False):
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, ckpt_name)
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
metadata["ss_training_finished_at"] = str(time.time())
metadata["ss_steps"] = str(steps)
metadata["ss_epoch"] = str(epoch_no)
metadata_to_save = minimum_metadata if args.no_metadata else metadata
title = args.metadata_title if args.metadata_title is not None else args.output_name
if args.min_timestep is not None or args.max_timestep is not None:
min_time_step = args.min_timestep if args.min_timestep is not None else 0
max_time_step = args.max_timestep if args.max_timestep is not None else 1000
md_timesteps = (min_time_step, max_time_step)
else:
md_timesteps = None
sai_metadata = sai_model_spec.build_metadata(
None,
self.architecture,
time.time(),
title,
None,
args.metadata_author,
args.metadata_description,
args.metadata_license,
args.metadata_tags,
timesteps=md_timesteps,
)
metadata_to_save.update(sai_metadata)
unwrapped_nw.save_weights(ckpt_file, save_dtype, metadata_to_save)
if args.huggingface_repo_id is not None:
huggingface_utils.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
def remove_model(old_ckpt_name):
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
# For --sample_at_first
if should_sample_images(args, global_step, epoch=0):
optimizer_eval_fn()
self.sample_images(accelerator, args, 0, global_step, vae, transformer, sample_parameters, dit_dtype)
optimizer_train_fn()
if len(accelerator.trackers) > 0:
# log empty object to commit the sample images to wandb
accelerator.log({}, step=0)
# training loop
# log device and dtype for each model
logger.info(f"DiT dtype: {transformer.dtype}, device: {transformer.device}")
clean_memory_on_device(accelerator.device)
for epoch in range(epoch_to_start, num_train_epochs):
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
metadata["ss_epoch"] = str(epoch + 1)
accelerator.unwrap_model(network).on_epoch_start(transformer)
for step, batch in enumerate(train_dataloader):
latents = batch["latents"]
bsz = latents.shape[0]
current_step.value = global_step
with accelerator.accumulate(training_model):
accelerator.unwrap_model(network).on_step_start()
latents = self.scale_shift_latents(latents)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
# calculate model input and timesteps
noisy_model_input, timesteps = self.get_noisy_model_input_and_timesteps(
args, noise, latents, noise_scheduler, accelerator.device, dit_dtype
)
weighting = compute_loss_weighting_for_sd3(
args.weighting_scheme, noise_scheduler, timesteps, accelerator.device, dit_dtype
)
model_pred, target = self.call_dit(
args, accelerator, transformer, latents, batch, noise, noisy_model_input, timesteps, network_dtype
)
loss = torch.nn.functional.mse_loss(model_pred.to(network_dtype), target, reduction="none")
if weighting is not None:
loss = loss * weighting
# loss = loss.mean([1, 2, 3])
# # min snr gamma, scale v pred loss like noise pred, v pred like loss, debiased estimation etc.
# loss = self.post_process_loss(loss, args, timesteps, noise_scheduler)
loss = loss.mean() # mean loss over all elements in batch
accelerator.backward(loss)
if accelerator.sync_gradients:
# self.all_reduce_network(accelerator, network) # sync DDP grad manually
state = accelerate.PartialState()
if state.distributed_type != accelerate.DistributedType.NO:
for param in network.parameters():
if param.grad is not None:
param.grad = accelerator.reduce(param.grad, reduction="mean")
if args.max_grad_norm != 0.0:
params_to_clip = accelerator.unwrap_model(network).get_trainable_params()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
if args.scale_weight_norms:
keys_scaled, mean_norm, maximum_norm = accelerator.unwrap_model(network).apply_max_norm_regularization(
args.scale_weight_norms, accelerator.device
)
max_mean_logs = {"Keys Scaled": keys_scaled, "Average key norm": mean_norm}
else:
keys_scaled, mean_norm, maximum_norm = None, None, None
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
# to avoid calling optimizer_eval_fn() too frequently, we call it only when we need to sample images or save the model
should_sampling = should_sample_images(args, global_step, epoch=None)
should_saving = args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0
if should_sampling or should_saving:
optimizer_eval_fn()
if should_sampling:
self.sample_images(accelerator, args, None, global_step, vae, transformer, sample_parameters, dit_dtype)
if should_saving:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
ckpt_name = train_utils.get_step_ckpt_name(args.output_name, global_step)
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch)
if args.save_state:
train_utils.save_and_remove_state_stepwise(args, accelerator, global_step)
remove_step_no = train_utils.get_remove_step_no(args, global_step)
if remove_step_no is not None:
remove_ckpt_name = train_utils.get_step_ckpt_name(args.output_name, remove_step_no)
remove_model(remove_ckpt_name)
optimizer_train_fn()
current_loss = loss.detach().item()
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
avr_loss: float = loss_recorder.moving_average
logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if args.scale_weight_norms:
progress_bar.set_postfix(**{**max_mean_logs, **logs})
if len(accelerator.trackers) > 0:
logs = self.generate_step_logs(
args, current_loss, avr_loss, lr_scheduler, lr_descriptions, optimizer, keys_scaled, mean_norm, maximum_norm
)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if len(accelerator.trackers) > 0:
logs = {"loss/epoch": loss_recorder.moving_average}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
# save model at the end of epoch if needed
optimizer_eval_fn()
if args.save_every_n_epochs is not None:
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
if is_main_process and saving:
ckpt_name = train_utils.get_epoch_ckpt_name(args.output_name, epoch + 1)
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch + 1)
remove_epoch_no = train_utils.get_remove_epoch_no(args, epoch + 1)
if remove_epoch_no is not None:
remove_ckpt_name = train_utils.get_epoch_ckpt_name(args.output_name, remove_epoch_no)
remove_model(remove_ckpt_name)
if args.save_state:
train_utils.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
self.sample_images(accelerator, args, epoch + 1, global_step, vae, transformer, sample_parameters, dit_dtype)
optimizer_train_fn()
# end of epoch
# metadata["ss_epoch"] = str(num_train_epochs)
metadata["ss_training_finished_at"] = str(time.time())
if is_main_process:
network = accelerator.unwrap_model(network)
accelerator.end_training()
optimizer_eval_fn()
if is_main_process and (args.save_state or args.save_state_on_train_end):
train_utils.save_state_on_train_end(args, accelerator)
if is_main_process:
ckpt_name = train_utils.get_last_ckpt_name(args.output_name)
save_model(ckpt_name, network, global_step, num_train_epochs, force_sync_upload=True)
logger.info("model saved.")
def setup_parser_common() -> argparse.ArgumentParser:
def int_or_float(value):
if value.endswith("%"):
try:
return float(value[:-1]) / 100.0
except ValueError:
raise argparse.ArgumentTypeError(f"Value '{value}' is not a valid percentage")
try:
float_value = float(value)
if float_value >= 1 and float_value.is_integer():
return int(value)
return float(value)
except ValueError:
raise argparse.ArgumentTypeError(f"'{value}' is not an int or float")
parser = argparse.ArgumentParser()
# general settings
parser.add_argument(
"--config_file",
type=str,
default=None,
help="using .toml instead of args to pass hyperparameter / ハイパーパラメータを引数ではなく.tomlファイルで渡す",
)
parser.add_argument(
"--dataset_config",
type=pathlib.Path,
default=None,
help="config file for dataset / データセットの設定ファイル",
)
# training settings
parser.add_argument(
"--sdpa",
action="store_true",
help="use sdpa for CrossAttention (requires PyTorch 2.0) / CrossAttentionにsdpaを使う(PyTorch 2.0が必要)",
)
parser.add_argument(
"--flash_attn",
action="store_true",
help="use FlashAttention for CrossAttention, requires FlashAttention / CrossAttentionにFlashAttentionを使う、FlashAttentionが必要",
)
parser.add_argument(
"--sage_attn",
action="store_true",
help="use SageAttention. requires SageAttention / SageAttentionを使う。SageAttentionが必要",
)
parser.add_argument(
"--xformers",
action="store_true",
help="use xformers for CrossAttention, requires xformers / CrossAttentionにxformersを使う、xformersが必要",
)
parser.add_argument(
"--flash3",
action="store_true",
help="use FlashAttention 3 for CrossAttention, requires FlashAttention 3, HunyuanVideo does not support this yet"
" / CrossAttentionにFlashAttention 3を使う、FlashAttention 3が必要。HunyuanVideoは未対応。",
)
parser.add_argument(
"--split_attn",
action="store_true",
help="use split attention for attention calculation (split batch size=1, affects memory usage and speed)"
" / attentionを分割して計算する(バッチサイズ=1に分割、メモリ使用量と速度に影響)",
)
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
parser.add_argument(
"--max_train_epochs",
type=int,
default=None,
help="training epochs (overrides max_train_steps) / 学習エポック数(max_train_stepsを上書きします)",
)
parser.add_argument(
"--max_data_loader_n_workers",
type=int,
default=8,
help="max num workers for DataLoader (lower is less main RAM usage, faster epoch start and slower data loading) / DataLoaderの最大プロセス数(小さい値ではメインメモリの使用量が減りエポック間の待ち時間が減りますが、データ読み込みは遅くなります)",
)
parser.add_argument(
"--persistent_data_loader_workers",
action="store_true",
help="persistent DataLoader workers (useful for reduce time gap between epoch, but may use more memory) / DataLoader のワーカーを持続させる (エポック間の時間差を少なくするのに有効だが、より多くのメモリを消費する可能性がある)",
)
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
parser.add_argument(
"--gradient_checkpointing", action="store_true", help="enable gradient checkpointing / gradient checkpointingを有効にする"
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数",
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help="use mixed precision / 混合精度を使う場合、その精度",
)
parser.add_argument(
"--logging_dir",
type=str,
default=None,
help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する",
)
parser.add_argument(
"--log_with",
type=str,
default=None,
choices=["tensorboard", "wandb", "all"],
help="what logging tool(s) to use (if 'all', TensorBoard and WandB are both used) / ログ出力に使用するツール (allを指定するとTensorBoardとWandBの両方が使用される)",
)
parser.add_argument(
"--log_prefix", type=str, default=None, help="add prefix for each log directory / ログディレクトリ名の先頭に追加する文字列"
)
parser.add_argument(
"--log_tracker_name",
type=str,
default=None,
help="name of tracker to use for logging, default is script-specific default name / ログ出力に使用するtrackerの名前、省略時はスクリプトごとのデフォルト名",
)
parser.add_argument(
"--wandb_run_name",
type=str,
default=None,
help="The name of the specific wandb session / wandb ログに表示される特定の実行の名前",
)
parser.add_argument(
"--log_tracker_config",
type=str,
default=None,
help="path to tracker config file to use for logging / ログ出力に使用するtrackerの設定ファイルのパス",
)
parser.add_argument(
"--wandb_api_key",
type=str,
default=None,
help="specify WandB API key to log in before starting training (optional). / WandB APIキーを指定して学習開始前にログインする(オプション)",
)
parser.add_argument("--log_config", action="store_true", help="log training configuration / 学習設定をログに出力する")
parser.add_argument(
"--ddp_timeout",
type=int,
default=None,
help="DDP timeout (min, None for default of accelerate) / DDPのタイムアウト(分、Noneでaccelerateのデフォルト)",
)
parser.add_argument(
"--ddp_gradient_as_bucket_view",
action="store_true",
help="enable gradient_as_bucket_view for DDP / DDPでgradient_as_bucket_viewを有効にする",
)
parser.add_argument(
"--ddp_static_graph",
action="store_true",
help="enable static_graph for DDP / DDPでstatic_graphを有効にする",
)
parser.add_argument(
"--sample_every_n_steps",
type=int,
default=None,
help="generate sample images every N steps / 学習中のモデルで指定ステップごとにサンプル出力する",
)
parser.add_argument(
"--sample_at_first", action="store_true", help="generate sample images before training / 学習前にサンプル出力する"
)
parser.add_argument(
"--sample_every_n_epochs",
type=int,
default=None,
help="generate sample images every N epochs (overwrites n_steps) / 学習中のモデルで指定エポックごとにサンプル出力する(ステップ数指定を上書きします)",
)
parser.add_argument(
"--sample_prompts",
type=str,
default=None,
help="file for prompts to generate sample images / 学習中モデルのサンプル出力用プロンプトのファイル",
)
# optimizer and lr scheduler settings
parser.add_argument(
"--optimizer_type",
type=str,
default="",
help="Optimizer to use / オプティマイザの種類: AdamW (default), AdamW8bit, AdaFactor. "
"Also, you can use any optimizer by specifying the full path to the class, like 'torch.optim.AdamW', 'bitsandbytes.optim.AdEMAMix8bit' or 'bitsandbytes.optim.PagedAdEMAMix8bit' etc. / ",
)
parser.add_argument(
"--optimizer_args",
type=str,
default=None,
nargs="*",
help='additional arguments for optimizer (like "weight_decay=0.01 betas=0.9,0.999 ...") / オプティマイザの追加引数(例: "weight_decay=0.01 betas=0.9,0.999 ...")',
)
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
parser.add_argument(
"--max_grad_norm",
default=1.0,
type=float,
help="Max gradient norm, 0 for no clipping / 勾配正規化の最大norm、0でclippingを行わない",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help="scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial, constant (default), constant_with_warmup, adafactor",
)
parser.add_argument(
"--lr_warmup_steps",
type=int_or_float,
default=0,
help="Int number of steps for the warmup in the lr scheduler (default is 0) or float with ratio of train steps"
" / 学習率のスケジューラをウォームアップするステップ数(デフォルト0)、または学習ステップの比率(1未満のfloat値の場合)",
)
parser.add_argument(
"--lr_decay_steps",
type=int_or_float,
default=0,
help="Int number of steps for the decay in the lr scheduler (default is 0) or float (<1) with ratio of train steps"
" / 学習率のスケジューラを減衰させるステップ数(デフォルト0)、または学習ステップの比率(1未満のfloat値の場合)",
)
parser.add_argument(
"--lr_scheduler_num_cycles",
type=int,
default=1,
help="Number of restarts for cosine scheduler with restarts / cosine with restartsスケジューラでのリスタート回数",
)
parser.add_argument(
"--lr_scheduler_power",
type=float,
default=1,
help="Polynomial power for polynomial scheduler / polynomialスケジューラでのpolynomial power",
)
parser.add_argument(
"--lr_scheduler_timescale",
type=int,
default=None,
help="Inverse sqrt timescale for inverse sqrt scheduler,defaults to `num_warmup_steps`"
+ " / 逆平方根スケジューラのタイムスケール、デフォルトは`num_warmup_steps`",
)
parser.add_argument(
"--lr_scheduler_min_lr_ratio",
type=float,
default=None,
help="The minimum learning rate as a ratio of the initial learning rate for cosine with min lr scheduler and warmup decay scheduler"
+ " / 初期学習率の比率としての最小学習率を指定する、cosine with min lr と warmup decay スケジューラ で有効",
)
parser.add_argument("--lr_scheduler_type", type=str, default="", help="custom scheduler module / 使用するスケジューラ")
parser.add_argument(
"--lr_scheduler_args",
type=str,
default=None,
nargs="*",
help='additional arguments for scheduler (like "T_max=100") / スケジューラの追加引数(例: "T_max100")',
)
parser.add_argument("--fp8_base", action="store_true", help="use fp8 for base model / base modelにfp8を使う")
# parser.add_argument("--full_fp16", action="store_true", help="fp16 training including gradients / 勾配も含めてfp16で学習する")
# parser.add_argument("--full_bf16", action="store_true", help="bf16 training including gradients / 勾配も含めてbf16で学習する")
parser.add_argument(
"--dynamo_backend",
type=str,
default="NO",
choices=[e.value for e in DynamoBackend],
help="dynamo backend type (default is None) / dynamoのbackendの種類(デフォルトは None)",
)
parser.add_argument(
"--dynamo_mode",
type=str,
default=None,
choices=["default", "reduce-overhead", "max-autotune"],
help="dynamo mode (default is default) / dynamoのモード(デフォルトは default)",
)
parser.add_argument(
"--dynamo_fullgraph",
action="store_true",
help="use fullgraph mode for dynamo / dynamoのfullgraphモードを使う",
)
parser.add_argument(
"--dynamo_dynamic",
action="store_true",
help="use dynamic mode for dynamo / dynamoのdynamicモードを使う",
)
parser.add_argument(
"--blocks_to_swap",
type=int,
default=None,
help="number of blocks to swap in the model, max XXX / モデル内のブロックの数、最大XXX",
)
parser.add_argument(
"--img_in_txt_in_offloading",
action="store_true",
help="offload img_in and txt_in to cpu / img_inとtxt_inをCPUにオフロードする",
)
# parser.add_argument("--flow_shift", type=float, default=7.0, help="Shift factor for flow matching schedulers")
parser.add_argument(
"--guidance_scale", type=float, default=1.0, help="Embeded classifier free guidance scale (HunyuanVideo only)."
)
parser.add_argument(
"--timestep_sampling",
choices=["sigma", "uniform", "sigmoid", "shift"],
default="sigma",
help="Method to sample timesteps: sigma-based, uniform random, sigmoid of random normal and shift of sigmoid."
" / タイムステップをサンプリングする方法:sigma、random uniform、random normalのsigmoid、sigmoidのシフト。",
)
parser.add_argument(
"--discrete_flow_shift",
type=float,
default=1.0,
help="Discrete flow shift for the Euler Discrete Scheduler, default is 1.0. / Euler Discrete Schedulerの離散フローシフト、デフォルトは1.0。",
)
parser.add_argument(
"--sigmoid_scale",
type=float,
default=1.0,
help='Scale factor for sigmoid timestep sampling (only used when timestep-sampling is "sigmoid" or "shift"). / sigmoidタイムステップサンプリングの倍率(timestep-samplingが"sigmoid"または"shift"の場合のみ有効)。',
)
parser.add_argument(
"--weighting_scheme",
type=str,
default="none",
choices=["logit_normal", "mode", "cosmap", "sigma_sqrt", "none"],
help="weighting scheme for timestep distribution. Default is none"
" / タイムステップ分布の重み付けスキーム、デフォルトはnone",
)
parser.add_argument(
"--logit_mean",
type=float,
default=0.0,
help="mean to use when using the `'logit_normal'` weighting scheme / `'logit_normal'`重み付けスキームを使用する場合の平均",
)
parser.add_argument(
"--logit_std",
type=float,
default=1.0,
help="std to use when using the `'logit_normal'` weighting scheme / `'logit_normal'`重み付けスキームを使用する場合のstd",
)
parser.add_argument(
"--mode_scale",
type=float,
default=1.29,
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme` / モード重み付けスキームのスケール",
)
parser.add_argument(
"--min_timestep",
type=int,
default=None,
help="set minimum time step for training (0~999, default is 0) / 学習時のtime stepの最小値を設定する(0~999で指定、省略時はデフォルト値(0)) ",
)
parser.add_argument(
"--max_timestep",
type=int,
default=None,
help="set maximum time step for training (1~1000, default is 1000) / 学習時のtime stepの最大値を設定する(1~1000で指定、省略時はデフォルト値(1000))",
)
parser.add_argument(
"--show_timesteps",
type=str,
default=None,
choices=["image", "console"],
help="show timesteps in image or console, and return to console / タイムステップを画像またはコンソールに表示し、コンソールに戻る",
)
# network settings
parser.add_argument(
"--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない"
)
parser.add_argument(
"--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み"
)
parser.add_argument(
"--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール"
)
parser.add_argument(
"--network_dim",
type=int,
default=None,
help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)",
)
parser.add_argument(
"--network_alpha",
type=float,
default=1,
help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)",
)
parser.add_argument(
"--network_dropout",
type=float,
default=None,
help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)",
)
parser.add_argument(
"--network_args",
type=str,
default=None,
nargs="*",
help="additional arguments for network (key=value) / ネットワークへの追加の引数",
)
parser.add_argument(
"--training_comment",
type=str,
default=None,
help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列",
)
parser.add_argument(
"--dim_from_weights",
action="store_true",
help="automatically determine dim (rank) from network_weights / dim (rank)をnetwork_weightsで指定した重みから自動で決定する",
)
parser.add_argument(
"--scale_weight_norms",
type=float,
default=None,
help="Scale the weight of each key pair to help prevent overtraing via exploding gradients. (1 is a good starting point) / 重みの値をスケーリングして勾配爆発を防ぐ(1が初期値としては適当)",
)
parser.add_argument(
"--base_weights",
type=str,
default=None,
nargs="*",
help="network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みファイル",
)
parser.add_argument(
"--base_weights_multiplier",
type=float,
default=None,
nargs="*",
help="multiplier for network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みの倍率",
)
# save and load settings
parser.add_argument(
"--output_dir", type=str, default=None, help="directory to output trained model / 学習後のモデル出力先ディレクトリ"
)
parser.add_argument(
"--output_name",
type=str,
default=None,
help="base name of trained model file / 学習後のモデルの拡張子を除くファイル名",
)
parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate")
parser.add_argument(
"--save_every_n_epochs",
type=int,
default=None,
help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存する",
)
parser.add_argument(
"--save_every_n_steps",
type=int,
default=None,
help="save checkpoint every N steps / 学習中のモデルを指定ステップごとに保存する",
)
parser.add_argument(
"--save_last_n_epochs",
type=int,
default=None,
help="save last N checkpoints when saving every N epochs (remove older checkpoints) / 指定エポックごとにモデルを保存するとき最大Nエポック保存する(古いチェックポイントは削除する)",
)
parser.add_argument(
"--save_last_n_epochs_state",
type=int,
default=None,
help="save last N checkpoints of state (overrides the value of --save_last_n_epochs)/ 最大Nエポックstateを保存する(--save_last_n_epochsの指定を上書きする)",
)
parser.add_argument(
"--save_last_n_steps",
type=int,
default=None,
help="save checkpoints until N steps elapsed (remove older checkpoints if N steps elapsed) / 指定ステップごとにモデルを保存するとき、このステップ数経過するまで保存する(このステップ数経過したら削除する)",
)
parser.add_argument(
"--save_last_n_steps_state",
type=int,
default=None,
help="save states until N steps elapsed (remove older states if N steps elapsed, overrides --save_last_n_steps) / 指定ステップごとにstateを保存するとき、このステップ数経過するまで保存する(このステップ数経過したら削除する。--save_last_n_stepsを上書きする)",
)
parser.add_argument(
"--save_state",
action="store_true",
help="save training state additionally (including optimizer states etc.) when saving model / optimizerなど学習状態も含めたstateをモデル保存時に追加で保存する",
)
parser.add_argument(
"--save_state_on_train_end",
action="store_true",
help="save training state (including optimizer states etc.) on train end even if --save_state is not specified"
" / --save_stateが未指定時にもoptimizerなど学習状態も含めたstateを学習終了時に保存する",
)
# SAI Model spec
parser.add_argument(
"--metadata_title",
type=str,
default=None,
help="title for model metadata (default is output_name) / メタデータに書き込まれるモデルタイトル、省略時はoutput_name",
)
parser.add_argument(
"--metadata_author",
type=str,
default=None,
help="author name for model metadata / メタデータに書き込まれるモデル作者名",
)
parser.add_argument(
"--metadata_description",
type=str,
default=None,
help="description for model metadata / メタデータに書き込まれるモデル説明",
)
parser.add_argument(
"--metadata_license",
type=str,
default=None,
help="license for model metadata / メタデータに書き込まれるモデルライセンス",
)
parser.add_argument(
"--metadata_tags",
type=str,
default=None,
help="tags for model metadata, separated by comma / メタデータに書き込まれるモデルタグ、カンマ区切り",
)
# huggingface settings
parser.add_argument(
"--huggingface_repo_id",
type=str,
default=None,
help="huggingface repo name to upload / huggingfaceにアップロードするリポジトリ名",
)
parser.add_argument(
"--huggingface_repo_type",
type=str,
default=None,
help="huggingface repo type to upload / huggingfaceにアップロードするリポジトリの種類",
)
parser.add_argument(
"--huggingface_path_in_repo",
type=str,
default=None,
help="huggingface model path to upload files / huggingfaceにアップロードするファイルのパス",
)
parser.add_argument("--huggingface_token", type=str, default=None, help="huggingface token / huggingfaceのトークン")
parser.add_argument(
"--huggingface_repo_visibility",
type=str,
default=None,
help="huggingface repository visibility ('public' for public, 'private' or None for private) / huggingfaceにアップロードするリポジトリの公開設定('public'で公開、'private'またはNoneで非公開)",
)
parser.add_argument(
"--save_state_to_huggingface", action="store_true", help="save state to huggingface / huggingfaceにstateを保存する"
)
parser.add_argument(
"--resume_from_huggingface",
action="store_true",
help="resume from huggingface (ex: --resume {repo_id}/{path_in_repo}:{revision}:{repo_type}) / huggingfaceから学習を再開する(例: --resume {repo_id}/{path_in_repo}:{revision}:{repo_type})",
)
parser.add_argument(
"--async_upload",
action="store_true",
help="upload to huggingface asynchronously / huggingfaceに非同期でアップロードする",
)
parser.add_argument("--dit", type=str, help="DiT checkpoint path / DiTのチェックポイントのパス")
parser.add_argument("--vae", type=str, help="VAE checkpoint path / VAEのチェックポイントのパス")
parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is float16")
return parser
def read_config_from_file(args: argparse.Namespace, parser: argparse.ArgumentParser):
if not args.config_file:
return args
config_path = args.config_file + ".toml" if not args.config_file.endswith(".toml") else args.config_file
if not os.path.exists(config_path):
logger.info(f"{config_path} not found.")
exit(1)
logger.info(f"Loading settings from {config_path}...")
with open(config_path, "r", encoding="utf-8") as f:
config_dict = toml.load(f)
# combine all sections into one
ignore_nesting_dict = {}
for section_name, section_dict in config_dict.items():
# if value is not dict, save key and value as is
if not isinstance(section_dict, dict):
ignore_nesting_dict[section_name] = section_dict
continue
# if value is dict, save all key and value into one dict
for key, value in section_dict.items():
ignore_nesting_dict[key] = value
config_args = argparse.Namespace(**ignore_nesting_dict)
args = parser.parse_args(namespace=config_args)
args.config_file = os.path.splitext(args.config_file)[0]
logger.info(args.config_file)
return args
def hv_setup_parser(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
"""HunyuanVideo specific parser setup"""
# model settings
parser.add_argument("--dit_dtype", type=str, default=None, help="data type for DiT, default is bfloat16")
parser.add_argument("--dit_in_channels", type=int, default=16, help="input channels for DiT, default is 16, skyreels I2V is 32")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for LLM / LLMにfp8を使う")
parser.add_argument("--text_encoder1", type=str, help="Text Encoder 1 directory / テキストエンコーダ1のディレクトリ")
parser.add_argument("--text_encoder2", type=str, help="Text Encoder 2 directory / テキストエンコーダ2のディレクトリ")
parser.add_argument("--text_encoder_dtype", type=str, default=None, help="data type for Text Encoder, default is float16")
parser.add_argument(
"--vae_tiling",
action="store_true",
help="enable spatial tiling for VAE, default is False. If vae_spatial_tile_sample_min_size is set, this is automatically enabled."
" / VAEの空間タイリングを有効にする、デフォルトはFalse。vae_spatial_tile_sample_min_sizeが設定されている場合、自動的に有効になります。",
)
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
return parser
if __name__ == "__main__":
parser = setup_parser_common()
parser = hv_setup_parser(parser)
args = parser.parse_args()
args = read_config_from_file(args, parser)
args.fp8_scaled = False # HunyuanVideo does not support this yet
trainer = NetworkTrainer()
trainer.train(args)