YiChen_FramePack_lora_early / wan_generate_video.py
svjack's picture
Upload folder using huggingface_hub
ef46f0f verified
import argparse
from datetime import datetime
import gc
import random
import os
import re
import time
import math
import copy
from types import ModuleType, SimpleNamespace
from typing import Tuple, Optional, List, Union, Any, Dict
import torch
import accelerate
from accelerate import Accelerator
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
import cv2
import numpy as np
import torchvision.transforms.functional as TF
from tqdm import tqdm
from networks import lora_wan
from utils.safetensors_utils import mem_eff_save_file, load_safetensors
from wan.configs import WAN_CONFIGS, SUPPORTED_SIZES
import wan
from wan.modules.model import WanModel, load_wan_model, detect_wan_sd_dtype
from wan.modules.vae import WanVAE
from wan.modules.t5 import T5EncoderModel
from wan.modules.clip import CLIPModel
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
from wan.utils.fm_solvers import FlowDPMSolverMultistepScheduler, get_sampling_sigmas, retrieve_timesteps
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
try:
from lycoris.kohya import create_network_from_weights
except:
pass
from utils.model_utils import str_to_dtype
from utils.device_utils import clean_memory_on_device
from hv_generate_video import save_images_grid, save_videos_grid, synchronize_device
from dataset.image_video_dataset import load_video
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
class GenerationSettings:
def __init__(
self, device: torch.device, cfg, dit_dtype: torch.dtype, dit_weight_dtype: Optional[torch.dtype], vae_dtype: torch.dtype
):
self.device = device
self.cfg = cfg
self.dit_dtype = dit_dtype
self.dit_weight_dtype = dit_weight_dtype
self.vae_dtype = vae_dtype
def parse_args() -> argparse.Namespace:
"""parse command line arguments"""
parser = argparse.ArgumentParser(description="Wan 2.1 inference script")
# WAN arguments
parser.add_argument("--ckpt_dir", type=str, default=None, help="The path to the checkpoint directory (Wan 2.1 official).")
parser.add_argument("--task", type=str, default="t2v-14B", choices=list(WAN_CONFIGS.keys()), help="The task to run.")
parser.add_argument(
"--sample_solver", type=str, default="unipc", choices=["unipc", "dpm++", "vanilla"], help="The solver used to sample."
)
parser.add_argument("--dit", type=str, default=None, help="DiT checkpoint path")
parser.add_argument("--vae", type=str, default=None, help="VAE checkpoint path")
parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is bfloat16")
parser.add_argument("--vae_cache_cpu", action="store_true", help="cache features in VAE on CPU")
parser.add_argument("--t5", type=str, default=None, help="text encoder (T5) checkpoint path")
parser.add_argument("--clip", type=str, default=None, help="text encoder (CLIP) checkpoint path")
# LoRA
parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns")
parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns")
parser.add_argument(
"--save_merged_model",
type=str,
default=None,
help="Save merged model to path. If specified, no inference will be performed.",
)
# inference
parser.add_argument("--prompt", type=str, default=None, help="prompt for generation")
parser.add_argument(
"--negative_prompt",
type=str,
default=None,
help="negative prompt for generation, use default negative prompt if not specified",
)
parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size, height and width")
parser.add_argument("--video_length", type=int, default=None, help="video length, Default depends on task")
parser.add_argument("--fps", type=int, default=16, help="video fps, Default is 16")
parser.add_argument("--infer_steps", type=int, default=None, help="number of inference steps")
parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
parser.add_argument(
"--cpu_noise", action="store_true", help="Use CPU to generate noise (compatible with ComfyUI). Default is False."
)
parser.add_argument(
"--guidance_scale",
type=float,
default=5.0,
help="Guidance scale for classifier free guidance. Default is 5.0.",
)
parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference")
parser.add_argument("--image_path", type=str, default=None, help="path to image for image2video inference")
parser.add_argument("--end_image_path", type=str, default=None, help="path to end image for image2video inference")
parser.add_argument(
"--control_path",
type=str,
default=None,
help="path to control video for inference with controlnet. video file or directory with images",
)
parser.add_argument("--trim_tail_frames", type=int, default=0, help="trim tail N frames from the video before saving")
parser.add_argument(
"--cfg_skip_mode",
type=str,
default="none",
choices=["early", "late", "middle", "early_late", "alternate", "none"],
help="CFG skip mode. each mode skips different parts of the CFG. "
" early: initial steps, late: later steps, middle: middle steps, early_late: both early and late, alternate: alternate, none: no skip (default)",
)
parser.add_argument(
"--cfg_apply_ratio",
type=float,
default=None,
help="The ratio of steps to apply CFG (0.0 to 1.0). Default is None (apply all steps).",
)
parser.add_argument(
"--slg_layers", type=str, default=None, help="Skip block (layer) indices for SLG (Skip Layer Guidance), comma separated"
)
parser.add_argument(
"--slg_scale",
type=float,
default=3.0,
help="scale for SLG classifier free guidance. Default is 3.0. Ignored if slg_mode is None or uncond",
)
parser.add_argument("--slg_start", type=float, default=0.0, help="start ratio for inference steps for SLG. Default is 0.0.")
parser.add_argument("--slg_end", type=float, default=0.3, help="end ratio for inference steps for SLG. Default is 0.3.")
parser.add_argument(
"--slg_mode",
type=str,
default=None,
choices=["original", "uncond"],
help="SLG mode. original: same as SD3, uncond: replace uncond pred with SLG pred",
)
# Flow Matching
parser.add_argument(
"--flow_shift",
type=float,
default=None,
help="Shift factor for flow matching schedulers. Default depends on task.",
)
parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT, only for fp8")
parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arithmetic (RTX 4XXX+), only for fp8_scaled")
parser.add_argument("--fp8_t5", action="store_true", help="use fp8 for Text Encoder model")
parser.add_argument(
"--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
)
parser.add_argument(
"--attn_mode",
type=str,
default="torch",
choices=["flash", "flash2", "flash3", "torch", "sageattn", "xformers", "sdpa"],
help="attention mode",
)
parser.add_argument("--blocks_to_swap", type=int, default=0, help="number of blocks to swap in the model")
parser.add_argument(
"--output_type", type=str, default="video", choices=["video", "images", "latent", "both"], help="output type"
)
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
parser.add_argument(
"--compile_args",
nargs=4,
metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
help="Torch.compile settings",
)
# New arguments for batch and interactive modes
parser.add_argument("--from_file", type=str, default=None, help="Read prompts from a file")
parser.add_argument("--interactive", action="store_true", help="Interactive mode: read prompts from console")
args = parser.parse_args()
# Validate arguments
if args.from_file and args.interactive:
raise ValueError("Cannot use both --from_file and --interactive at the same time")
if args.prompt is None and not args.from_file and not args.interactive and args.latent_path is None:
raise ValueError("Either --prompt, --from_file, --interactive, or --latent_path must be specified")
assert (args.latent_path is None or len(args.latent_path) == 0) or (
args.output_type == "images" or args.output_type == "video"
), "latent_path is only supported for images or video output"
return args
def parse_prompt_line(line: str) -> Dict[str, Any]:
"""Parse a prompt line into a dictionary of argument overrides
Args:
line: Prompt line with options
Returns:
Dict[str, Any]: Dictionary of argument overrides
"""
# TODO common function with hv_train_network.line_to_prompt_dict
parts = line.split(" --")
prompt = parts[0].strip()
# Create dictionary of overrides
overrides = {"prompt": prompt}
for part in parts[1:]:
if not part.strip():
continue
option_parts = part.split(" ", 1)
option = option_parts[0].strip()
value = option_parts[1].strip() if len(option_parts) > 1 else ""
# Map options to argument names
if option == "w":
overrides["video_size_width"] = int(value)
elif option == "h":
overrides["video_size_height"] = int(value)
elif option == "f":
overrides["video_length"] = int(value)
elif option == "d":
overrides["seed"] = int(value)
elif option == "s":
overrides["infer_steps"] = int(value)
elif option == "g" or option == "l":
overrides["guidance_scale"] = float(value)
elif option == "fs":
overrides["flow_shift"] = float(value)
elif option == "i":
overrides["image_path"] = value
elif option == "cn":
overrides["control_path"] = value
elif option == "n":
overrides["negative_prompt"] = value
return overrides
def apply_overrides(args: argparse.Namespace, overrides: Dict[str, Any]) -> argparse.Namespace:
"""Apply overrides to args
Args:
args: Original arguments
overrides: Dictionary of overrides
Returns:
argparse.Namespace: New arguments with overrides applied
"""
args_copy = copy.deepcopy(args)
for key, value in overrides.items():
if key == "video_size_width":
args_copy.video_size[1] = value
elif key == "video_size_height":
args_copy.video_size[0] = value
else:
setattr(args_copy, key, value)
return args_copy
def get_task_defaults(task: str, size: Optional[Tuple[int, int]] = None) -> Tuple[int, float, int, bool]:
"""Return default values for each task
Args:
task: task name (t2v, t2i, i2v etc.)
size: size of the video (width, height)
Returns:
Tuple[int, float, int, bool]: (infer_steps, flow_shift, video_length, needs_clip)
"""
width, height = size if size else (0, 0)
if "t2i" in task:
return 50, 5.0, 1, False
elif "i2v" in task:
flow_shift = 3.0 if (width == 832 and height == 480) or (width == 480 and height == 832) else 5.0
return 40, flow_shift, 81, True
else: # t2v or default
return 50, 5.0, 81, False
def setup_args(args: argparse.Namespace) -> argparse.Namespace:
"""Validate and set default values for optional arguments
Args:
args: command line arguments
Returns:
argparse.Namespace: updated arguments
"""
# Get default values for the task
infer_steps, flow_shift, video_length, _ = get_task_defaults(args.task, tuple(args.video_size))
# Apply default values to unset arguments
if args.infer_steps is None:
args.infer_steps = infer_steps
if args.flow_shift is None:
args.flow_shift = flow_shift
if args.video_length is None:
args.video_length = video_length
# Force video_length to 1 for t2i tasks
if "t2i" in args.task:
assert args.video_length == 1, f"video_length should be 1 for task {args.task}"
# parse slg_layers
if args.slg_layers is not None:
args.slg_layers = list(map(int, args.slg_layers.split(",")))
return args
def check_inputs(args: argparse.Namespace) -> Tuple[int, int, int]:
"""Validate video size and length
Args:
args: command line arguments
Returns:
Tuple[int, int, int]: (height, width, video_length)
"""
height = args.video_size[0]
width = args.video_size[1]
size = f"{width}*{height}"
if size not in SUPPORTED_SIZES[args.task]:
logger.warning(f"Size {size} is not supported for task {args.task}. Supported sizes are {SUPPORTED_SIZES[args.task]}.")
video_length = args.video_length
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
return height, width, video_length
def calculate_dimensions(video_size: Tuple[int, int], video_length: int, config) -> Tuple[Tuple[int, int, int, int], int]:
"""calculate dimensions for the generation
Args:
video_size: video frame size (height, width)
video_length: number of frames in the video
config: model configuration
Returns:
Tuple[Tuple[int, int, int, int], int]:
((channels, frames, height, width), seq_len)
"""
height, width = video_size
frames = video_length
# calculate latent space dimensions
lat_f = (frames - 1) // config.vae_stride[0] + 1
lat_h = height // config.vae_stride[1]
lat_w = width // config.vae_stride[2]
# calculate sequence length
seq_len = math.ceil((lat_h * lat_w) / (config.patch_size[1] * config.patch_size[2]) * lat_f)
return ((16, lat_f, lat_h, lat_w), seq_len)
def load_vae(args: argparse.Namespace, config, device: torch.device, dtype: torch.dtype) -> WanVAE:
"""load VAE model
Args:
args: command line arguments
config: model configuration
device: device to use
dtype: data type for the model
Returns:
WanVAE: loaded VAE model
"""
vae_path = args.vae if args.vae is not None else os.path.join(args.ckpt_dir, config.vae_checkpoint)
logger.info(f"Loading VAE model from {vae_path}")
cache_device = torch.device("cpu") if args.vae_cache_cpu else None
vae = WanVAE(vae_path=vae_path, device=device, dtype=dtype, cache_device=cache_device)
return vae
def load_text_encoder(args: argparse.Namespace, config, device: torch.device) -> T5EncoderModel:
"""load text encoder (T5) model
Args:
args: command line arguments
config: model configuration
device: device to use
Returns:
T5EncoderModel: loaded text encoder model
"""
checkpoint_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.t5_checkpoint)
tokenizer_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.t5_tokenizer)
text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=device,
checkpoint_path=checkpoint_path,
tokenizer_path=tokenizer_path,
weight_path=args.t5,
fp8=args.fp8_t5,
)
return text_encoder
def load_clip_model(args: argparse.Namespace, config, device: torch.device) -> CLIPModel:
"""load CLIP model (for I2V only)
Args:
args: command line arguments
config: model configuration
device: device to use
Returns:
CLIPModel: loaded CLIP model
"""
checkpoint_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.clip_checkpoint)
tokenizer_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.clip_tokenizer)
clip = CLIPModel(
dtype=config.clip_dtype,
device=device,
checkpoint_path=checkpoint_path,
tokenizer_path=tokenizer_path,
weight_path=args.clip,
)
return clip
def load_dit_model(
args: argparse.Namespace,
config,
device: torch.device,
dit_dtype: torch.dtype,
dit_weight_dtype: Optional[torch.dtype] = None,
is_i2v: bool = False,
) -> WanModel:
"""load DiT model
Args:
args: command line arguments
config: model configuration
device: device to use
dit_dtype: data type for the model
dit_weight_dtype: data type for the model weights. None for as-is
is_i2v: I2V mode
Returns:
WanModel: loaded DiT model
"""
loading_device = "cpu"
if args.blocks_to_swap == 0 and args.lora_weight is None and not args.fp8_scaled:
loading_device = device
loading_weight_dtype = dit_weight_dtype
if args.fp8_scaled or args.lora_weight is not None:
loading_weight_dtype = dit_dtype # load as-is
# do not fp8 optimize because we will merge LoRA weights
model = load_wan_model(config, device, args.dit, args.attn_mode, False, loading_device, loading_weight_dtype, False)
return model
def merge_lora_weights(lora_module: ModuleType, model: torch.nn.Module, args: argparse.Namespace, device: torch.device) -> None:
"""merge LoRA weights to the model
Args:
model: DiT model
args: command line arguments
device: device to use
"""
if args.lora_weight is None or len(args.lora_weight) == 0:
return
for i, lora_weight in enumerate(args.lora_weight):
if args.lora_multiplier is not None and len(args.lora_multiplier) > i:
lora_multiplier = args.lora_multiplier[i]
else:
lora_multiplier = 1.0
logger.info(f"Loading LoRA weights from {lora_weight} with multiplier {lora_multiplier}")
weights_sd = load_file(lora_weight)
# apply include/exclude patterns
original_key_count = len(weights_sd.keys())
if args.include_patterns is not None and len(args.include_patterns) > i:
include_pattern = args.include_patterns[i]
regex_include = re.compile(include_pattern)
weights_sd = {k: v for k, v in weights_sd.items() if regex_include.search(k)}
logger.info(f"Filtered keys with include pattern {include_pattern}: {original_key_count} -> {len(weights_sd.keys())}")
if args.exclude_patterns is not None and len(args.exclude_patterns) > i:
original_key_count_ex = len(weights_sd.keys())
exclude_pattern = args.exclude_patterns[i]
regex_exclude = re.compile(exclude_pattern)
weights_sd = {k: v for k, v in weights_sd.items() if not regex_exclude.search(k)}
logger.info(
f"Filtered keys with exclude pattern {exclude_pattern}: {original_key_count_ex} -> {len(weights_sd.keys())}"
)
if len(weights_sd) != original_key_count:
remaining_keys = list(set([k.split(".", 1)[0] for k in weights_sd.keys()]))
remaining_keys.sort()
logger.info(f"Remaining LoRA modules after filtering: {remaining_keys}")
if len(weights_sd) == 0:
logger.warning(f"No keys left after filtering.")
if args.lycoris:
lycoris_net, _ = create_network_from_weights(
multiplier=lora_multiplier,
file=None,
weights_sd=weights_sd,
unet=model,
text_encoder=None,
vae=None,
for_inference=True,
)
lycoris_net.merge_to(None, model, weights_sd, dtype=None, device=device)
else:
network = lora_module.create_arch_network_from_weights(lora_multiplier, weights_sd, unet=model, for_inference=True)
network.merge_to(None, model, weights_sd, device=device, non_blocking=True)
synchronize_device(device)
logger.info("LoRA weights loaded")
# save model here before casting to dit_weight_dtype
if args.save_merged_model:
logger.info(f"Saving merged model to {args.save_merged_model}")
mem_eff_save_file(model.state_dict(), args.save_merged_model) # save_file needs a lot of memory
logger.info("Merged model saved")
def optimize_model(
model: WanModel, args: argparse.Namespace, device: torch.device, dit_dtype: torch.dtype, dit_weight_dtype: torch.dtype
) -> None:
"""optimize the model (FP8 conversion, device move etc.)
Args:
model: dit model
args: command line arguments
device: device to use
dit_dtype: dtype for the model
dit_weight_dtype: dtype for the model weights
"""
if args.fp8_scaled:
# load state dict as-is and optimize to fp8
state_dict = model.state_dict()
# if no blocks to swap, we can move the weights to GPU after optimization on GPU (omit redundant CPU->GPU copy)
move_to_device = args.blocks_to_swap == 0 # if blocks_to_swap > 0, we will keep the model on CPU
state_dict = model.fp8_optimization(state_dict, device, move_to_device, use_scaled_mm=args.fp8_fast)
info = model.load_state_dict(state_dict, strict=True, assign=True)
logger.info(f"Loaded FP8 optimized weights: {info}")
if args.blocks_to_swap == 0:
model.to(device) # make sure all parameters are on the right device (e.g. RoPE etc.)
else:
# simple cast to dit_dtype
target_dtype = None # load as-is (dit_weight_dtype == dtype of the weights in state_dict)
target_device = None
if dit_weight_dtype is not None: # in case of args.fp8 and not args.fp8_scaled
logger.info(f"Convert model to {dit_weight_dtype}")
target_dtype = dit_weight_dtype
if args.blocks_to_swap == 0:
logger.info(f"Move model to device: {device}")
target_device = device
model.to(target_device, target_dtype) # move and cast at the same time. this reduces redundant copy operations
if args.compile:
compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
logger.info(
f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
)
torch._dynamo.config.cache_size_limit = 32
for i in range(len(model.blocks)):
model.blocks[i] = torch.compile(
model.blocks[i],
backend=compile_backend,
mode=compile_mode,
dynamic=compile_dynamic.lower() in "true",
fullgraph=compile_fullgraph.lower() in "true",
)
if args.blocks_to_swap > 0:
logger.info(f"Enable swap {args.blocks_to_swap} blocks to CPU from device: {device}")
model.enable_block_swap(args.blocks_to_swap, device, supports_backward=False)
model.move_to_device_except_swap_blocks(device)
model.prepare_block_swap_before_forward()
else:
# make sure the model is on the right device
model.to(device)
model.eval().requires_grad_(False)
clean_memory_on_device(device)
def prepare_t2v_inputs(
args: argparse.Namespace,
config,
accelerator: Accelerator,
device: torch.device,
vae: Optional[WanVAE] = None,
encoded_context: Optional[Dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
"""Prepare inputs for T2V
Args:
args: command line arguments
config: model configuration
accelerator: Accelerator instance
device: device to use
vae: VAE model for control video encoding
encoded_context: Pre-encoded text context
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
(noise, context, context_null, (arg_c, arg_null))
"""
# Prepare inputs for T2V
# calculate dimensions and sequence length
height, width = args.video_size
frames = args.video_length
(_, lat_f, lat_h, lat_w), seq_len = calculate_dimensions(args.video_size, args.video_length, config)
target_shape = (16, lat_f, lat_h, lat_w)
# configure negative prompt
n_prompt = args.negative_prompt if args.negative_prompt else config.sample_neg_prompt
# set seed
seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
if not args.cpu_noise:
seed_g = torch.Generator(device=device)
seed_g.manual_seed(seed)
else:
# ComfyUI compatible noise
seed_g = torch.manual_seed(seed)
if encoded_context is None:
# load text encoder
text_encoder = load_text_encoder(args, config, device)
text_encoder.model.to(device)
# encode prompt
with torch.no_grad():
if args.fp8_t5:
with torch.amp.autocast(device_type=device.type, dtype=config.t5_dtype):
context = text_encoder([args.prompt], device)
context_null = text_encoder([n_prompt], device)
else:
context = text_encoder([args.prompt], device)
context_null = text_encoder([n_prompt], device)
# free text encoder and clean memory
del text_encoder
clean_memory_on_device(device)
else:
# Use pre-encoded context
context = encoded_context["context"]
context_null = encoded_context["context_null"]
# Fun-Control: encode control video to latent space
if config.is_fun_control:
# TODO use same resizing as for image
logger.info(f"Encoding control video to latent space")
# C, F, H, W
control_video = load_control_video(args.control_path, frames, height, width).to(device)
vae.to_device(device)
with torch.autocast(device_type=device.type, dtype=vae.dtype), torch.no_grad():
control_latent = vae.encode([control_video])[0]
y = torch.concat([control_latent, torch.zeros_like(control_latent)], dim=0) # add control video latent
vae.to_device("cpu")
else:
y = None
# generate noise
noise = torch.randn(target_shape, dtype=torch.float32, generator=seed_g, device=device if not args.cpu_noise else "cpu")
noise = noise.to(device)
# prepare model input arguments
arg_c = {"context": context, "seq_len": seq_len}
arg_null = {"context": context_null, "seq_len": seq_len}
if y is not None:
arg_c["y"] = [y]
arg_null["y"] = [y]
return noise, context, context_null, (arg_c, arg_null)
def prepare_i2v_inputs(
args: argparse.Namespace,
config,
accelerator: Accelerator,
device: torch.device,
vae: WanVAE,
encoded_context: Optional[Dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
"""Prepare inputs for I2V
Args:
args: command line arguments
config: model configuration
accelerator: Accelerator instance
device: device to use
vae: VAE model, used for image encoding
encoded_context: Pre-encoded text context
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
(noise, context, context_null, y, (arg_c, arg_null))
"""
# get video dimensions
height, width = args.video_size
frames = args.video_length
max_area = width * height
# load image
img = Image.open(args.image_path).convert("RGB")
# convert to numpy
img_cv2 = np.array(img) # PIL to numpy
# convert to tensor (-1 to 1)
img_tensor = TF.to_tensor(img).sub_(0.5).div_(0.5).to(device)
# end frame image
if args.end_image_path is not None:
end_img = Image.open(args.end_image_path).convert("RGB")
end_img_cv2 = np.array(end_img) # PIL to numpy
else:
end_img = None
end_img_cv2 = None
has_end_image = end_img is not None
# calculate latent dimensions: keep aspect ratio
height, width = img_tensor.shape[1:]
aspect_ratio = height / width
lat_h = round(np.sqrt(max_area * aspect_ratio) // config.vae_stride[1] // config.patch_size[1] * config.patch_size[1])
lat_w = round(np.sqrt(max_area / aspect_ratio) // config.vae_stride[2] // config.patch_size[2] * config.patch_size[2])
height = lat_h * config.vae_stride[1]
width = lat_w * config.vae_stride[2]
lat_f = (frames - 1) // config.vae_stride[0] + 1 # size of latent frames
max_seq_len = (lat_f + (1 if has_end_image else 0)) * lat_h * lat_w // (config.patch_size[1] * config.patch_size[2])
# set seed
seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
if not args.cpu_noise:
seed_g = torch.Generator(device=device)
seed_g.manual_seed(seed)
else:
# ComfyUI compatible noise
seed_g = torch.manual_seed(seed)
# generate noise
noise = torch.randn(
16,
lat_f + (1 if has_end_image else 0),
lat_h,
lat_w,
dtype=torch.float32,
generator=seed_g,
device=device if not args.cpu_noise else "cpu",
)
noise = noise.to(device)
# configure negative prompt
n_prompt = args.negative_prompt if args.negative_prompt else config.sample_neg_prompt
if encoded_context is None:
# load text encoder
text_encoder = load_text_encoder(args, config, device)
text_encoder.model.to(device)
# encode prompt
with torch.no_grad():
if args.fp8_t5:
with torch.amp.autocast(device_type=device.type, dtype=config.t5_dtype):
context = text_encoder([args.prompt], device)
context_null = text_encoder([n_prompt], device)
else:
context = text_encoder([args.prompt], device)
context_null = text_encoder([n_prompt], device)
# free text encoder and clean memory
del text_encoder
clean_memory_on_device(device)
# load CLIP model
clip = load_clip_model(args, config, device)
clip.model.to(device)
# encode image to CLIP context
logger.info(f"Encoding image to CLIP context")
with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad():
clip_context = clip.visual([img_tensor[:, None, :, :]])
logger.info(f"Encoding complete")
# free CLIP model and clean memory
del clip
clean_memory_on_device(device)
else:
# Use pre-encoded context
context = encoded_context["context"]
context_null = encoded_context["context_null"]
clip_context = encoded_context["clip_context"]
# encode image to latent space with VAE
logger.info(f"Encoding image to latent space")
vae.to_device(device)
# resize image
interpolation = cv2.INTER_AREA if height < img_cv2.shape[0] else cv2.INTER_CUBIC
img_resized = cv2.resize(img_cv2, (width, height), interpolation=interpolation)
img_resized = TF.to_tensor(img_resized).sub_(0.5).div_(0.5).to(device) # -1 to 1, CHW
img_resized = img_resized.unsqueeze(1) # CFHW
if has_end_image:
interpolation = cv2.INTER_AREA if height < end_img_cv2.shape[1] else cv2.INTER_CUBIC
end_img_resized = cv2.resize(end_img_cv2, (width, height), interpolation=interpolation)
end_img_resized = TF.to_tensor(end_img_resized).sub_(0.5).div_(0.5).to(device) # -1 to 1, CHW
end_img_resized = end_img_resized.unsqueeze(1) # CFHW
# create mask for the first frame
msk = torch.zeros(4, lat_f + (1 if has_end_image else 0), lat_h, lat_w, device=device)
msk[:, 0] = 1
if has_end_image:
msk[:, -1] = 1
# encode image to latent space
with accelerator.autocast(), torch.no_grad():
# padding to match the required number of frames
padding_frames = frames - 1 # the first frame is image
img_resized = torch.concat([img_resized, torch.zeros(3, padding_frames, height, width, device=device)], dim=1)
y = vae.encode([img_resized])[0]
if has_end_image:
y_end = vae.encode([end_img_resized])[0]
y = torch.concat([y, y_end], dim=1) # add end frame
y = torch.concat([msk, y])
logger.info(f"Encoding complete")
# Fun-Control: encode control video to latent space
if config.is_fun_control:
# TODO use same resizing as for image
logger.info(f"Encoding control video to latent space")
# C, F, H, W
control_video = load_control_video(args.control_path, frames + (1 if has_end_image else 0), height, width).to(device)
with accelerator.autocast(), torch.no_grad():
control_latent = vae.encode([control_video])[0]
y = y[msk.shape[0] :] # remove mask because Fun-Control does not need it
if has_end_image:
y[:, 1:-1] = 0 # remove image latent except first and last frame. according to WanVideoWrapper, this doesn't work
else:
y[:, 1:] = 0 # remove image latent except first frame
y = torch.concat([control_latent, y], dim=0) # add control video latent
# prepare model input arguments
arg_c = {
"context": [context[0]],
"clip_fea": clip_context,
"seq_len": max_seq_len,
"y": [y],
}
arg_null = {
"context": context_null,
"clip_fea": clip_context,
"seq_len": max_seq_len,
"y": [y],
}
vae.to_device("cpu") # move VAE to CPU to save memory
clean_memory_on_device(device)
return noise, context, context_null, y, (arg_c, arg_null)
def load_control_video(control_path: str, frames: int, height: int, width: int) -> torch.Tensor:
"""load control video to latent space
Args:
control_path: path to control video
frames: number of frames in the video
height: height of the video
width: width of the video
Returns:
torch.Tensor: control video latent, CFHW
"""
logger.info(f"Load control video from {control_path}")
video = load_video(control_path, 0, frames, bucket_reso=(width, height)) # list of frames
if len(video) < frames:
raise ValueError(f"Video length is less than {frames}")
# video = np.stack(video, axis=0) # F, H, W, C
video = torch.stack([TF.to_tensor(frame).sub_(0.5).div_(0.5) for frame in video], dim=0) # F, C, H, W, -1 to 1
video = video.permute(1, 0, 2, 3) # C, F, H, W
return video
def setup_scheduler(args: argparse.Namespace, config, device: torch.device) -> Tuple[Any, torch.Tensor]:
"""setup scheduler for sampling
Args:
args: command line arguments
config: model configuration
device: device to use
Returns:
Tuple[Any, torch.Tensor]: (scheduler, timesteps)
"""
if args.sample_solver == "unipc":
scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False)
scheduler.set_timesteps(args.infer_steps, device=device, shift=args.flow_shift)
timesteps = scheduler.timesteps
elif args.sample_solver == "dpm++":
scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False
)
sampling_sigmas = get_sampling_sigmas(args.infer_steps, args.flow_shift)
timesteps, _ = retrieve_timesteps(scheduler, device=device, sigmas=sampling_sigmas)
elif args.sample_solver == "vanilla":
scheduler = FlowMatchDiscreteScheduler(num_train_timesteps=config.num_train_timesteps, shift=args.flow_shift)
scheduler.set_timesteps(args.infer_steps, device=device)
timesteps = scheduler.timesteps
# FlowMatchDiscreteScheduler does not support generator argument in step method
org_step = scheduler.step
def step_wrapper(
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
return_dict: bool = True,
generator=None,
):
return org_step(model_output, timestep, sample, return_dict=return_dict)
scheduler.step = step_wrapper
else:
raise NotImplementedError("Unsupported solver.")
return scheduler, timesteps
def run_sampling(
model: WanModel,
noise: torch.Tensor,
scheduler: Any,
timesteps: torch.Tensor,
args: argparse.Namespace,
inputs: Tuple[dict, dict],
device: torch.device,
seed_g: torch.Generator,
accelerator: Accelerator,
is_i2v: bool = False,
use_cpu_offload: bool = True,
) -> torch.Tensor:
"""run sampling
Args:
model: dit model
noise: initial noise
scheduler: scheduler for sampling
timesteps: time steps for sampling
args: command line arguments
inputs: model input (arg_c, arg_null)
device: device to use
seed_g: random generator
accelerator: Accelerator instance
is_i2v: I2V mode (False means T2V mode)
use_cpu_offload: Whether to offload tensors to CPU during processing
Returns:
torch.Tensor: generated latent
"""
arg_c, arg_null = inputs
latent = noise
latent_storage_device = device if not use_cpu_offload else "cpu"
latent = latent.to(latent_storage_device)
# cfg skip
apply_cfg_array = []
num_timesteps = len(timesteps)
if args.cfg_skip_mode != "none" and args.cfg_apply_ratio is not None:
# Calculate thresholds based on cfg_apply_ratio
apply_steps = int(num_timesteps * args.cfg_apply_ratio)
if args.cfg_skip_mode == "early":
# Skip CFG in early steps, apply in late steps
start_index = num_timesteps - apply_steps
end_index = num_timesteps
elif args.cfg_skip_mode == "late":
# Skip CFG in late steps, apply in early steps
start_index = 0
end_index = apply_steps
elif args.cfg_skip_mode == "early_late":
# Skip CFG in early and late steps, apply in middle steps
start_index = (num_timesteps - apply_steps) // 2
end_index = start_index + apply_steps
elif args.cfg_skip_mode == "middle":
# Skip CFG in middle steps, apply in early and late steps
skip_steps = num_timesteps - apply_steps
middle_start = (num_timesteps - skip_steps) // 2
middle_end = middle_start + skip_steps
w = 0.0
for step_idx in range(num_timesteps):
if args.cfg_skip_mode == "alternate":
# accumulate w and apply CFG when w >= 1.0
w += args.cfg_apply_ratio
apply = w >= 1.0
if apply:
w -= 1.0
elif args.cfg_skip_mode == "middle":
# Skip CFG in early and late steps, apply in middle steps
apply = step_idx < middle_start or step_idx >= middle_end
else:
# Apply CFG on some steps based on ratio
apply = step_idx >= start_index and step_idx < end_index
apply_cfg_array.append(apply)
pattern = ["A" if apply else "S" for apply in apply_cfg_array]
pattern = "".join(pattern)
logger.info(f"CFG skip mode: {args.cfg_skip_mode}, apply ratio: {args.cfg_apply_ratio}, pattern: {pattern}")
else:
# Apply CFG on all steps
apply_cfg_array = [True] * num_timesteps
# SLG original implementation is based on https://github.com/Stability-AI/sd3.5/blob/main/sd3_impls.py
slg_start_step = int(args.slg_start * num_timesteps)
slg_end_step = int(args.slg_end * num_timesteps)
for i, t in enumerate(tqdm(timesteps)):
# latent is on CPU if use_cpu_offload is True
latent_model_input = [latent.to(device)]
timestep = torch.stack([t]).to(device)
with accelerator.autocast(), torch.no_grad():
noise_pred_cond = model(latent_model_input, t=timestep, **arg_c)[0].to(latent_storage_device)
apply_cfg = apply_cfg_array[i] # apply CFG or not
if apply_cfg:
apply_slg = i >= slg_start_step and i < slg_end_step
# print(f"Applying SLG: {apply_slg}, i: {i}, slg_start_step: {slg_start_step}, slg_end_step: {slg_end_step}")
if args.slg_mode == "original" and apply_slg:
noise_pred_uncond = model(latent_model_input, t=timestep, **arg_null)[0].to(latent_storage_device)
# apply guidance
# SD3 formula: scaled = neg_out + (pos_out - neg_out) * cond_scale
noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)
# calculate skip layer out
skip_layer_out = model(latent_model_input, t=timestep, skip_block_indices=args.slg_layers, **arg_null)[0].to(
latent_storage_device
)
# apply skip layer guidance
# SD3 formula: scaled = scaled + (pos_out - skip_layer_out) * self.slg
noise_pred = noise_pred + args.slg_scale * (noise_pred_cond - skip_layer_out)
elif args.slg_mode == "uncond" and apply_slg:
# noise_pred_uncond is skip layer out
noise_pred_uncond = model(latent_model_input, t=timestep, skip_block_indices=args.slg_layers, **arg_null)[0].to(
latent_storage_device
)
# apply guidance
noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)
else:
# normal guidance
noise_pred_uncond = model(latent_model_input, t=timestep, **arg_null)[0].to(latent_storage_device)
# apply guidance
noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)
else:
noise_pred = noise_pred_cond
# step
latent_input = latent.unsqueeze(0)
temp_x0 = scheduler.step(noise_pred.unsqueeze(0), t, latent_input, return_dict=False, generator=seed_g)[0]
# update latent
latent = temp_x0.squeeze(0)
return latent
def generate(args: argparse.Namespace, gen_settings: GenerationSettings, shared_models: Optional[Dict] = None) -> torch.Tensor:
"""main function for generation
Args:
args: command line arguments
shared_models: dictionary containing pre-loaded models and encoded data
Returns:
torch.Tensor: generated latent
"""
device, cfg, dit_dtype, dit_weight_dtype, vae_dtype = (
gen_settings.device,
gen_settings.cfg,
gen_settings.dit_dtype,
gen_settings.dit_weight_dtype,
gen_settings.vae_dtype,
)
# prepare accelerator
mixed_precision = "bf16" if dit_dtype == torch.bfloat16 else "fp16"
accelerator = accelerate.Accelerator(mixed_precision=mixed_precision)
# I2V or T2V
is_i2v = "i2v" in args.task
# prepare seed
seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
args.seed = seed # set seed to args for saving
# Check if we have shared models
if shared_models is not None:
# Use shared models and encoded data
vae = shared_models.get("vae")
model = shared_models.get("model")
encoded_context = shared_models.get("encoded_contexts", {}).get(args.prompt)
# prepare inputs
if is_i2v:
# I2V
noise, context, context_null, y, inputs = prepare_i2v_inputs(args, cfg, accelerator, device, vae, encoded_context)
else:
# T2V
noise, context, context_null, inputs = prepare_t2v_inputs(args, cfg, accelerator, device, vae, encoded_context)
else:
# prepare inputs without shared models
if is_i2v:
# I2V: need text encoder, VAE and CLIP
vae = load_vae(args, cfg, device, vae_dtype)
noise, context, context_null, y, inputs = prepare_i2v_inputs(args, cfg, accelerator, device, vae)
# vae is on CPU after prepare_i2v_inputs
else:
# T2V: need text encoder
vae = None
if cfg.is_fun_control:
# Fun-Control: need VAE for encoding control video
vae = load_vae(args, cfg, device, vae_dtype)
noise, context, context_null, inputs = prepare_t2v_inputs(args, cfg, accelerator, device, vae)
# load DiT model
model = load_dit_model(args, cfg, device, dit_dtype, dit_weight_dtype, is_i2v)
# merge LoRA weights
if args.lora_weight is not None and len(args.lora_weight) > 0:
merge_lora_weights(lora_wan, model, args, device)
# if we only want to save the model, we can skip the rest
if args.save_merged_model:
return None
# optimize model: fp8 conversion, block swap etc.
optimize_model(model, args, device, dit_dtype, dit_weight_dtype)
# setup scheduler
scheduler, timesteps = setup_scheduler(args, cfg, device)
# set random generator
seed_g = torch.Generator(device=device)
seed_g.manual_seed(seed)
# run sampling
latent = run_sampling(model, noise, scheduler, timesteps, args, inputs, device, seed_g, accelerator, is_i2v)
# Only clean up shared models if they were created within this function
if shared_models is None:
# free memory
del model
del scheduler
synchronize_device(device)
# wait for 5 seconds until block swap is done
logger.info("Waiting for 5 seconds to finish block swap")
time.sleep(5)
gc.collect()
clean_memory_on_device(device)
# save VAE model for decoding
if vae is None:
args._vae = None
else:
args._vae = vae
return latent
def decode_latent(latent: torch.Tensor, args: argparse.Namespace, cfg) -> torch.Tensor:
"""decode latent
Args:
latent: latent tensor
args: command line arguments
cfg: model configuration
Returns:
torch.Tensor: decoded video or image
"""
device = torch.device(args.device)
# load VAE model or use the one from the generation
vae_dtype = str_to_dtype(args.vae_dtype) if args.vae_dtype is not None else torch.bfloat16
if hasattr(args, "_vae") and args._vae is not None:
vae = args._vae
else:
vae = load_vae(args, cfg, device, vae_dtype)
vae.to_device(device)
logger.info(f"Decoding video from latents: {latent.shape}")
x0 = latent.to(device)
with torch.autocast(device_type=device.type, dtype=vae_dtype), torch.no_grad():
videos = vae.decode(x0)
# some tail frames may be corrupted when end frame is used, we add an option to remove them
if args.trim_tail_frames:
videos[0] = videos[0][:, : -args.trim_tail_frames]
logger.info(f"Decoding complete")
video = videos[0]
del videos
video = video.to(torch.float32).cpu()
return video
def save_latent(latent: torch.Tensor, args: argparse.Namespace, height: int, width: int) -> str:
"""Save latent to file
Args:
latent: latent tensor
args: command line arguments
height: height of frame
width: width of frame
Returns:
str: Path to saved latent file
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
video_length = args.video_length
latent_path = f"{save_path}/{time_flag}_{seed}_latent.safetensors"
if args.no_metadata:
metadata = None
else:
metadata = {
"seeds": f"{seed}",
"prompt": f"{args.prompt}",
"height": f"{height}",
"width": f"{width}",
"video_length": f"{video_length}",
"infer_steps": f"{args.infer_steps}",
"guidance_scale": f"{args.guidance_scale}",
}
if args.negative_prompt is not None:
metadata["negative_prompt"] = f"{args.negative_prompt}"
sd = {"latent": latent}
save_file(sd, latent_path, metadata=metadata)
logger.info(f"Latent saved to: {latent_path}")
return latent_path
def save_video(video: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str:
"""Save video to file
Args:
video: Video tensor
args: command line arguments
original_base_name: Original base name (if latents are loaded from files)
Returns:
str: Path to saved video file
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}"
video_path = f"{save_path}/{time_flag}_{seed}{original_name}.mp4"
video = video.unsqueeze(0)
save_videos_grid(video, video_path, fps=args.fps, rescale=True)
logger.info(f"Video saved to: {video_path}")
return video_path
def save_images(sample: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str:
"""Save images to directory
Args:
sample: Video tensor
args: command line arguments
original_base_name: Original base name (if latents are loaded from files)
Returns:
str: Path to saved images directory
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}"
image_name = f"{time_flag}_{seed}{original_name}"
sample = sample.unsqueeze(0)
save_images_grid(sample, save_path, image_name, rescale=True)
logger.info(f"Sample images saved to: {save_path}/{image_name}")
return f"{save_path}/{image_name}"
def save_output(
latent: torch.Tensor, args: argparse.Namespace, cfg, height: int, width: int, original_base_names: Optional[List[str]] = None
) -> None:
"""save output
Args:
latent: latent tensor
args: command line arguments
cfg: model configuration
height: height of frame
width: width of frame
original_base_names: original base names (if latents are loaded from files)
"""
if args.output_type == "latent" or args.output_type == "both":
# save latent
save_latent(latent, args, height, width)
if args.output_type == "video" or args.output_type == "both":
# save video
sample = decode_latent(latent.unsqueeze(0), args, cfg)
original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
save_video(sample, args, original_name)
elif args.output_type == "images":
# save images
sample = decode_latent(latent.unsqueeze(0), args, cfg)
original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
save_images(sample, args, original_name)
def preprocess_prompts_for_batch(prompt_lines: List[str], base_args: argparse.Namespace) -> List[Dict]:
"""Process multiple prompts for batch mode
Args:
prompt_lines: List of prompt lines
base_args: Base command line arguments
Returns:
List[Dict]: List of prompt data dictionaries
"""
prompts_data = []
for line in prompt_lines:
line = line.strip()
if not line or line.startswith("#"): # Skip empty lines and comments
continue
# Parse prompt line and create override dictionary
prompt_data = parse_prompt_line(line)
logger.info(f"Parsed prompt data: {prompt_data}")
prompts_data.append(prompt_data)
return prompts_data
def process_batch_prompts(prompts_data: List[Dict], args: argparse.Namespace) -> None:
"""Process multiple prompts with model reuse
Args:
prompts_data: List of prompt data dictionaries
args: Base command line arguments
"""
if not prompts_data:
logger.warning("No valid prompts found")
return
# 1. Load configuration
gen_settings = get_generation_settings(args)
device, cfg, dit_dtype, dit_weight_dtype, vae_dtype = (
gen_settings.device,
gen_settings.cfg,
gen_settings.dit_dtype,
gen_settings.dit_weight_dtype,
gen_settings.vae_dtype,
)
is_i2v = "i2v" in args.task
# 2. Encode all prompts
logger.info("Loading text encoder to encode all prompts")
text_encoder = load_text_encoder(args, cfg, device)
text_encoder.model.to(device)
encoded_contexts = {}
with torch.no_grad():
for prompt_data in prompts_data:
prompt = prompt_data["prompt"]
prompt_args = apply_overrides(args, prompt_data)
n_prompt = prompt_data.get(
"negative_prompt", prompt_args.negative_prompt if prompt_args.negative_prompt else cfg.sample_neg_prompt
)
if args.fp8_t5:
with torch.amp.autocast(device_type=device.type, dtype=cfg.t5_dtype):
context = text_encoder([prompt], device)
context_null = text_encoder([n_prompt], device)
else:
context = text_encoder([prompt], device)
context_null = text_encoder([n_prompt], device)
encoded_contexts[prompt] = {"context": context, "context_null": context_null}
# Free text encoder and clean memory
del text_encoder
clean_memory_on_device(device)
# 3. Process I2V additional encodings if needed
vae = None
if is_i2v:
logger.info("Loading VAE and CLIP for I2V preprocessing")
vae = load_vae(args, cfg, device, vae_dtype)
vae.to_device(device)
clip = load_clip_model(args, cfg, device)
clip.model.to(device)
# Process each image and encode with CLIP
for prompt_data in prompts_data:
if "image_path" not in prompt_data:
continue
prompt_args = apply_overrides(args, prompt_data)
if not os.path.exists(prompt_args.image_path):
logger.warning(f"Image path not found: {prompt_args.image_path}")
continue
# Load and encode image with CLIP
img = Image.open(prompt_args.image_path).convert("RGB")
img_tensor = TF.to_tensor(img).sub_(0.5).div_(0.5).to(device)
with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad():
clip_context = clip.visual([img_tensor[:, None, :, :]])
encoded_contexts[prompt_data["prompt"]]["clip_context"] = clip_context
# Free CLIP and clean memory
del clip
clean_memory_on_device(device)
# Keep VAE in CPU memory for later use
vae.to_device("cpu")
elif cfg.is_fun_control:
# For Fun-Control, we need VAE but keep it on CPU
vae = load_vae(args, cfg, device, vae_dtype)
vae.to_device("cpu")
# 4. Load DiT model
logger.info("Loading DiT model")
model = load_dit_model(args, cfg, device, dit_dtype, dit_weight_dtype, is_i2v)
# 5. Merge LoRA weights if needed
if args.lora_weight is not None and len(args.lora_weight) > 0:
merge_lora_weights(lora_wan, model, args, device)
if args.save_merged_model:
logger.info("Model merged and saved. Exiting.")
return
# 6. Optimize model
optimize_model(model, args, device, dit_dtype, dit_weight_dtype)
# Create shared models dict for generate function
shared_models = {"vae": vae, "model": model, "encoded_contexts": encoded_contexts}
# 7. Generate for each prompt
all_latents = []
all_prompt_args = []
for i, prompt_data in enumerate(prompts_data):
logger.info(f"Processing prompt {i+1}/{len(prompts_data)}: {prompt_data['prompt'][:50]}...")
# Apply overrides for this prompt
prompt_args = apply_overrides(args, prompt_data)
# Generate latent
latent = generate(prompt_args, gen_settings, shared_models)
# Save latent if needed
height, width, _ = check_inputs(prompt_args)
if prompt_args.output_type == "latent" or prompt_args.output_type == "both":
save_latent(latent, prompt_args, height, width)
all_latents.append(latent)
all_prompt_args.append(prompt_args)
# 8. Free DiT model
del model
clean_memory_on_device(device)
synchronize_device(device)
# wait for 5 seconds until block swap is done
logger.info("Waiting for 5 seconds to finish block swap")
time.sleep(5)
gc.collect()
clean_memory_on_device(device)
# 9. Decode latents if needed
if args.output_type != "latent":
logger.info("Decoding latents to videos/images")
if vae is None:
vae = load_vae(args, cfg, device, vae_dtype)
vae.to_device(device)
for i, (latent, prompt_args) in enumerate(zip(all_latents, all_prompt_args)):
logger.info(f"Decoding output {i+1}/{len(all_latents)}")
# Decode latent
video = decode_latent(latent.unsqueeze(0), prompt_args, cfg)
# Save as video or images
if prompt_args.output_type == "video" or prompt_args.output_type == "both":
save_video(video, prompt_args)
elif prompt_args.output_type == "images":
save_images(video, prompt_args)
# Free VAE
del vae
clean_memory_on_device(device)
gc.collect()
def process_interactive(args: argparse.Namespace) -> None:
"""Process prompts in interactive mode
Args:
args: Base command line arguments
"""
gen_settings = get_generation_settings(args)
device, cfg, dit_dtype, dit_weight_dtype, vae_dtype = (
gen_settings.device,
gen_settings.cfg,
gen_settings.dit_dtype,
gen_settings.dit_weight_dtype,
gen_settings.vae_dtype,
)
is_i2v = "i2v" in args.task
# Initialize models to None
text_encoder = None
vae = None
model = None
clip = None
print("Interactive mode. Enter prompts (Ctrl+D to exit):")
try:
while True:
try:
line = input("> ")
if not line.strip():
continue
# Parse prompt
prompt_data = parse_prompt_line(line)
prompt_args = apply_overrides(args, prompt_data)
# Ensure we have all the models we need
# 1. Load text encoder if not already loaded
if text_encoder is None:
logger.info("Loading text encoder")
text_encoder = load_text_encoder(args, cfg, device)
text_encoder.model.to(device)
# Encode prompt
n_prompt = prompt_data.get(
"negative_prompt", prompt_args.negative_prompt if prompt_args.negative_prompt else cfg.sample_neg_prompt
)
with torch.no_grad():
if args.fp8_t5:
with torch.amp.autocast(device_type=device.type, dtype=cfg.t5_dtype):
context = text_encoder([prompt_data["prompt"]], device)
context_null = text_encoder([n_prompt], device)
else:
context = text_encoder([prompt_data["prompt"]], device)
context_null = text_encoder([n_prompt], device)
encoded_context = {"context": context, "context_null": context_null}
# Move text encoder to CPU after use
text_encoder.model.to("cpu")
# 2. For I2V, we need CLIP and VAE
if is_i2v:
if clip is None:
logger.info("Loading CLIP model")
clip = load_clip_model(args, cfg, device)
clip.model.to(device)
# Encode image with CLIP if there's an image path
if prompt_args.image_path and os.path.exists(prompt_args.image_path):
img = Image.open(prompt_args.image_path).convert("RGB")
img_tensor = TF.to_tensor(img).sub_(0.5).div_(0.5).to(device)
with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad():
clip_context = clip.visual([img_tensor[:, None, :, :]])
encoded_context["clip_context"] = clip_context
# Move CLIP to CPU after use
clip.model.to("cpu")
# Load VAE if needed
if vae is None:
logger.info("Loading VAE model")
vae = load_vae(args, cfg, device, vae_dtype)
elif cfg.is_fun_control and vae is None:
# For Fun-Control, we need VAE
logger.info("Loading VAE model for Fun-Control")
vae = load_vae(args, cfg, device, vae_dtype)
# 3. Load DiT model if not already loaded
if model is None:
logger.info("Loading DiT model")
model = load_dit_model(args, cfg, device, dit_dtype, dit_weight_dtype, is_i2v)
# Merge LoRA weights if needed
if args.lora_weight is not None and len(args.lora_weight) > 0:
merge_lora_weights(lora_wan, model, args, device)
# Optimize model
optimize_model(model, args, device, dit_dtype, dit_weight_dtype)
else:
# Move model to GPU if it was offloaded
model.to(device)
# Create shared models dict
shared_models = {"vae": vae, "model": model, "encoded_contexts": {prompt_data["prompt"]: encoded_context}}
# Generate latent
latent = generate(prompt_args, gen_settings, shared_models)
# Move model to CPU after generation
model.to("cpu")
# Save latent if needed
height, width, _ = check_inputs(prompt_args)
if prompt_args.output_type == "latent" or prompt_args.output_type == "both":
save_latent(latent, prompt_args, height, width)
# Decode and save output
if prompt_args.output_type != "latent":
if vae is None:
vae = load_vae(args, cfg, device, vae_dtype)
vae.to_device(device)
video = decode_latent(latent.unsqueeze(0), prompt_args, cfg)
if prompt_args.output_type == "video" or prompt_args.output_type == "both":
save_video(video, prompt_args)
elif prompt_args.output_type == "images":
save_images(video, prompt_args)
# Move VAE to CPU after use
vae.to_device("cpu")
clean_memory_on_device(device)
except KeyboardInterrupt:
print("\nInterrupted. Continue (Ctrl+D or Ctrl+Z (Windows) to exit)")
continue
except EOFError:
print("\nExiting interactive mode")
# Clean up all models
if text_encoder is not None:
del text_encoder
if clip is not None:
del clip
if vae is not None:
del vae
if model is not None:
del model
clean_memory_on_device(device)
gc.collect()
def get_generation_settings(args: argparse.Namespace) -> GenerationSettings:
device = torch.device(args.device)
cfg = WAN_CONFIGS[args.task]
# select dtype
dit_dtype = detect_wan_sd_dtype(args.dit) if args.dit is not None else torch.bfloat16
if dit_dtype.itemsize == 1:
# if weight is in fp8, use bfloat16 for DiT (input/output)
dit_dtype = torch.bfloat16
if args.fp8_scaled:
raise ValueError(
"DiT weights is already in fp8 format, cannot scale to fp8. Please use fp16/bf16 weights / DiTの重みはすでにfp8形式です。fp8にスケーリングできません。fp16/bf16の重みを使用してください"
)
dit_weight_dtype = dit_dtype # default
if args.fp8_scaled:
dit_weight_dtype = None # various precision weights, so don't cast to specific dtype
elif args.fp8:
dit_weight_dtype = torch.float8_e4m3fn
vae_dtype = str_to_dtype(args.vae_dtype) if args.vae_dtype is not None else dit_dtype
logger.info(
f"Using device: {device}, DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}, VAE precision: {vae_dtype}"
)
gen_settings = GenerationSettings(
device=device,
cfg=cfg,
dit_dtype=dit_dtype,
dit_weight_dtype=dit_weight_dtype,
vae_dtype=vae_dtype,
)
return gen_settings
def main():
# Parse arguments
args = parse_args()
# Check if latents are provided
latents_mode = args.latent_path is not None and len(args.latent_path) > 0
# Set device
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
logger.info(f"Using device: {device}")
args.device = device
if latents_mode:
# Original latent decode mode
cfg = WAN_CONFIGS[args.task] # any task is fine
original_base_names = []
latents_list = []
seeds = []
assert len(args.latent_path) == 1, "Only one latent path is supported for now"
for latent_path in args.latent_path:
original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0])
seed = 0
if os.path.splitext(latent_path)[1] != ".safetensors":
latents = torch.load(latent_path, map_location="cpu")
else:
latents = load_file(latent_path)["latent"]
with safe_open(latent_path, framework="pt") as f:
metadata = f.metadata()
if metadata is None:
metadata = {}
logger.info(f"Loaded metadata: {metadata}")
if "seeds" in metadata:
seed = int(metadata["seeds"])
if "height" in metadata and "width" in metadata:
height = int(metadata["height"])
width = int(metadata["width"])
args.video_size = [height, width]
if "video_length" in metadata:
args.video_length = int(metadata["video_length"])
seeds.append(seed)
latents_list.append(latents)
logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}")
latent = torch.stack(latents_list, dim=0) # [N, ...], must be same shape
height = latents.shape[-2]
width = latents.shape[-1]
height *= cfg.patch_size[1] * cfg.vae_stride[1]
width *= cfg.patch_size[2] * cfg.vae_stride[2]
video_length = latents.shape[1]
video_length = (video_length - 1) * cfg.vae_stride[0] + 1
args.seed = seeds[0]
# Decode and save
save_output(latent[0], args, cfg, height, width, original_base_names)
elif args.from_file:
# Batch mode from file
args = setup_args(args)
# Read prompts from file
with open(args.from_file, "r", encoding="utf-8") as f:
prompt_lines = f.readlines()
# Process prompts
prompts_data = preprocess_prompts_for_batch(prompt_lines, args)
process_batch_prompts(prompts_data, args)
elif args.interactive:
# Interactive mode
args = setup_args(args)
process_interactive(args)
else:
# Single prompt mode (original behavior)
args = setup_args(args)
height, width, video_length = check_inputs(args)
logger.info(
f"Video size: {height}x{width}@{video_length} (HxW@F), fps: {args.fps}, "
f"infer_steps: {args.infer_steps}, flow_shift: {args.flow_shift}"
)
# Generate latent
gen_settings = get_generation_settings(args)
latent = generate(args, gen_settings)
# Make sure the model is freed from GPU memory
gc.collect()
clean_memory_on_device(args.device)
# Save latent and video
if args.save_merged_model:
return
# Add batch dimension
latent = latent.unsqueeze(0)
save_output(latent[0], args, WAN_CONFIGS[args.task], height, width)
logger.info("Done!")
if __name__ == "__main__":
main()