|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** onewan |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
# Sample Use |
|
Jupyter notebook、特にGoogle Colaboratoryで動作させることを想定しています |
|
|
|
まずは以下のとおりインストールを実行してください |
|
|
|
```Python |
|
!pip install unsloth |
|
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install --upgrade torch |
|
!pip install --upgrade xformers |
|
!pip install ipywidgets --upgrade |
|
``` |
|
|
|
- 以下のコードを実行する前に、 |
|
- コードの中の「--Input your own Hugging Face Token--」の部分にご自身のHugging FaceのTokenを入力してください |
|
- Access Tokens > Create new tokenで、Token typeは「Finegrained」として、Read, Writeをチェックして、取得するとよいでしょう |
|
- "elyza-tasks-100-TV_0.jsonl"を同じフォルダに入れてください |
|
- Colaboratoryの場合は、左のフォルダマークを押して、直下にファイルをドラッグ&ドロップしてください |
|
|
|
|
|
```Python |
|
import torch |
|
if torch.cuda.get_device_capability()[0] >= 8: |
|
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3" |
|
|
|
from unsloth import FastLanguageModel |
|
import json |
|
from tqdm import tqdm |
|
import datetime |
|
import pytz |
|
|
|
model_name = "onewan/llm-jp-3-13b-finetune-2" |
|
new_model_id = "llm-jp-3-13b-finetune-2" |
|
|
|
max_seq_length = 2048 |
|
dtype = None |
|
load_in_4bit = True |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = model_name, |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
token = "--Input your own Hugging Face Token--", |
|
) |
|
FastLanguageModel.for_inference(model) |
|
|
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
now = datetime.datetime.now(pytz.timezone('Asia/Tokyo')).strftime("%Y%m%d-%H%M%S") |
|
|
|
with open(f"{new_model_id}_output_{now}.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
``` |