morriszms's picture
Update README.md
eeaae62 verified
---
license: llama2
tags:
- code llama
- TensorBlock
- GGUF
base_model: Phind/Phind-CodeLlama-34B-Python-v1
model-index:
- name: Phind-CodeLlama-34B-v1
results:
- task:
type: text-generation
dataset:
name: HumanEval
type: openai_humaneval
metrics:
- type: pass@1
value: 69.5%
name: pass@1
verified: false
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)
## Phind/Phind-CodeLlama-34B-Python-v1 - GGUF
This repo contains GGUF format model files for [Phind/Phind-CodeLlama-34B-Python-v1](https://huggingface.co/Phind/Phind-CodeLlama-34B-Python-v1).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">πŸ‘€ See what we built πŸ‘€</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">πŸ‘€ See what we built πŸ‘€</a>
</th>
</tr>
</table>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Phind-CodeLlama-34B-Python-v1-Q2_K.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q2_K.gguf) | Q2_K | 12.506 GB | smallest, significant quality loss - not recommended for most purposes |
| [Phind-CodeLlama-34B-Python-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q3_K_S.gguf) | Q3_K_S | 14.605 GB | very small, high quality loss |
| [Phind-CodeLlama-34B-Python-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q3_K_M.gguf) | Q3_K_M | 16.306 GB | very small, high quality loss |
| [Phind-CodeLlama-34B-Python-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q3_K_L.gguf) | Q3_K_L | 17.772 GB | small, substantial quality loss |
| [Phind-CodeLlama-34B-Python-v1-Q4_0.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q4_0.gguf) | Q4_0 | 19.052 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Phind-CodeLlama-34B-Python-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q4_K_S.gguf) | Q4_K_S | 19.192 GB | small, greater quality loss |
| [Phind-CodeLlama-34B-Python-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q4_K_M.gguf) | Q4_K_M | 20.220 GB | medium, balanced quality - recommended |
| [Phind-CodeLlama-34B-Python-v1-Q5_0.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q5_0.gguf) | Q5_0 | 23.237 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Phind-CodeLlama-34B-Python-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q5_K_S.gguf) | Q5_K_S | 23.237 GB | large, low quality loss - recommended |
| [Phind-CodeLlama-34B-Python-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q5_K_M.gguf) | Q5_K_M | 23.839 GB | large, very low quality loss - recommended |
| [Phind-CodeLlama-34B-Python-v1-Q6_K.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q6_K.gguf) | Q6_K | 27.684 GB | very large, extremely low quality loss |
| [Phind-CodeLlama-34B-Python-v1-Q8_0.gguf](https://huggingface.co/tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF/blob/main/Phind-CodeLlama-34B-Python-v1-Q8_0.gguf) | Q8_0 | 35.856 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF --include "Phind-CodeLlama-34B-Python-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Phind_Phind-CodeLlama-34B-Python-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```