swiftformer-xs-OT / README.md
Augusto777's picture
End of training
da8be71 verified
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-OT
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8548387096774194

swiftformer-xs-OT

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4956
  • Accuracy: 0.8548

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0015
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.89 4 1.3804 0.5161
No log 2.0 9 1.2554 0.5323
1.3469 2.89 13 0.9725 0.6613
1.3469 4.0 18 0.7086 0.7581
0.9831 4.89 22 0.8856 0.7258
0.9831 6.0 27 0.7724 0.7581
0.7441 6.89 31 0.8190 0.7258
0.7441 8.0 36 0.6897 0.7742
0.6939 8.89 40 0.6599 0.7258
0.6939 10.0 45 0.6288 0.7742
0.6939 10.89 49 0.6333 0.7581
0.5861 12.0 54 0.6206 0.7742
0.5861 12.89 58 0.5263 0.7903
0.5018 14.0 63 0.5836 0.8065
0.5018 14.89 67 0.6125 0.7419
0.4642 16.0 72 0.5431 0.8065
0.4642 16.89 76 0.5893 0.8387
0.4064 18.0 81 0.4997 0.8065
0.4064 18.89 85 0.5474 0.7742
0.4275 20.0 90 0.6748 0.7903
0.4275 20.89 94 0.6369 0.7581
0.4275 22.0 99 0.5610 0.7742
0.373 22.89 103 0.5260 0.7903
0.373 24.0 108 0.5416 0.8387
0.2931 24.89 112 0.5146 0.8387
0.2931 26.0 117 0.5180 0.7742
0.3135 26.89 121 0.5169 0.8226
0.3135 28.0 126 0.5491 0.8387
0.2342 28.89 130 0.5385 0.8387
0.2342 30.0 135 0.5456 0.8387
0.2342 30.89 139 0.4956 0.8548
0.2411 32.0 144 0.5254 0.8226
0.2411 32.89 148 0.5533 0.8387
0.2135 34.0 153 0.5613 0.8387
0.2135 34.89 157 0.5748 0.8226
0.1904 35.56 160 0.5844 0.8387

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0