metadata
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 250000
- name: speaker
dtype: string
- name: subset
dtype: string
- name: index
dtype: int64
- name: label
dtype: string
- name: original_name
dtype: string
splits:
- name: train
num_bytes: 12703856316.896
num_examples: 99024
download_size: 8163587149
dataset_size: 12703856316.896
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
Dataset Card for VocSim - Mouse Identity Classification
Dataset Description
This dataset is used in the VocSim benchmark paper for evaluating the ability of neural audio embeddings to identify individual mice based on their ultrasonic vocalization (USV) syllables. It contains pre-segmented USV syllables from multiple individual mice, derived from recordings created by Van Segbroeck et al. (2017).
The primary task associated with this dataset is supervised classification: training a model to predict the correct mouse identity (speaker
field) given an audio input (a single syllable) or its derived features.
Included Files:
- Hugging Face
Dataset
object containing audio file paths (individual syllables) and metadata (mouse identity).
Dataset Structure
Data Instances
A typical example in the dataset looks like this:
{
'audio': {'path': '/path/to/datasets/mouse_identity/BM003/BM003_syllable_1.wav', 'array': array([...], dtype=float32), 'sampling_rate': 250000},
'subset': 'mouse_identity',
'index': 50,
'speaker': 'BM003', # The crucial individual mouse ID (target label)
'label': 'BM003_syllable_1', # Syllable-specific identifier
'original_name': 'BM003/BM003_syllable_1.wav' # Example original relative path
}
Citation Information
If you use this dataset, please cite the VocSim benchmark paper, and the MUPET software if relying on the provided segmentation:
@unpublished{vocsim2025,
title={VocSim: Zero-Shot Audio Similarity Benchmark for Neural Embeddings},
author={Anonymous},
year={2025},
note={Submitted manuscript}
}
@article{VanSegbroeck2017,
author = {Van Segbroeck, Maarten and Knoll, Aaron T. and Levitt, Patricia and Narayanan, Shrikanth},
title = "{MUPET}-Mouse Ultrasonic Profile ExTraction: A Signal Processing Tool for Rapid and Unsupervised Analysis of Ultrasonic Vocalizations",
journal = {Neuron},
volume = {94},
number = {3},
pages = {465--485.e5},
year = {2017},
doi = {10.1016/j.neuron.2017.04.018}
}