id
stringlengths
22
42
metadata
dict
text
stringlengths
9
1.03M
proofpile-julia0005-42449
{ "provenance": "014.jsonl.gz:242450" }
using Random, Test using LatexLH, ModelObjectsLH, ModelParams, CollegeEntry ce = CollegeEntry; function constructor_test() @testset "Constructors" begin J = 8; nc = 3; switches = make_entry_switches_oneloc(J, nc); @test validate_es(switches) end end function access_test(switches) @testset "Access routines" begin # println("\n--------------------------") # println(switches); objId = ObjectId(:entryDecision); st = ce.make_test_symbol_table(); e = init_entry_decision(objId, switches, st); # println(e); J = n_types(e); nc = n_colleges(e); nl = n_locations(e); @test 0.0 < min_entry_prob(e) < max_entry_prob(e) < 1.0 @test entry_pref_scale(e) > 0.0 @test isa(CollegeEntry.value_local(e), Float64) capacityV = capacities(e); if any(capacityV .< 1e6) @test CollegeEntry.limited_capacity(e) else @test !CollegeEntry.limited_capacity(e) end typeMass_jlM = type_mass_jl(e); @test size(typeMass_jlM) == (J, nl) @test all(typeMass_jlM .>= 0.0) for j = 1 : J @test isapprox(typeMass_jlM[j,:], type_mass_jl(e, j)) @test isapprox(sum(typeMass_jlM[j,:]), type_mass_j(e, j)) end @test type_mass_jl(e, J, nl) == typeMass_jlM[J, nl] capacity_clM = capacities(e); @test size(capacity_clM) == (nc, nl) for ic = 1 : nc @test isapprox(capacity_clM[ic,:], CollegeEntry.capacity(e, ic)) end if nl == 1 @test CollegeEntry.value_local(e) == 0.0 end end end function subset_switches_test(switches) @testset "Subset switches" begin idxV = 2 : 2 : n_types(switches); CollegeEntry.subset_types!(switches, idxV); @test validate_es(switches) @test n_types(switches) == length(idxV) end end # Test `entry_probs` which has no notion of locations function entry_test(switches, prefShocks :: Bool) rng = MersenneTwister(49); @testset "Entry probs: $switches" begin F1 = Float64; st = ce.make_test_symbol_table(); e = init_entry_decision(ObjectId(:entry), switches, st); # println("\n------------") # println(e); # println("Preference shocks: $prefShocks"); J = n_types(e); nc = n_colleges(e); nl = n_locations(e); vWork_jV, vCollege_jcM = CollegeEntry.values_for_test(rng, J, nc, nl); admitV = [1, 3]; rejectV = [2]; prob_jcM, eVal_jV = entry_probs(e, vWork_jV, vCollege_jcM, admitV; prefShocks = prefShocks); @test all(prob_jcM .>= 0.0) @test all(prob_jcM .<= 1.0) @test size(prob_jcM) == (J, nc) @test size(eVal_jV) == (J,) @test all(prob_jcM[:, rejectV] .== 0.0) # One person at a time for j = 1 : J prob_cV, eVal = entry_probs(e, vWork_jV[j], vCollege_jcM[j,:], admitV; prefShocks = prefShocks); @test isapprox(prob_cV, prob_jcM[j,:]) @test isapprox(eVal, eVal_jV[j]) end # Increasing a value should increase probability # Not for limited capacities, though # Also not without pref shocks if !limited_capacity(e) && prefShocks idx = admitV[end]; otherAdmitV = admitV[1 : (end-1)]; vCollege_jcM[:, idx] .+= 0.1; prob2_jcM, eVal2_jV = entry_probs(e, vWork_jV, vCollege_jcM, admitV; prefShocks = prefShocks); @test all(prob2_jcM[:, idx] .> prob_jcM[:, idx]) @test all(prob2_jcM[:, otherAdmitV] .< prob_jcM[:, otherAdmitV]) @test all(eVal2_jV .> eVal_jV) end # Empty admission set prob_jcM, eVal_jV = entry_probs(e, vWork_jV, vCollege_jcM, []; prefShocks = prefShocks); @test size(prob_jcM) == (J, nc) @test all(prob_jcM .== 0.0) # if !isa(e, EntryTwoStep) @test isapprox(eVal_jV, vWork_jV) # end end end # Check that small preference shocks give about the same answer as no preference shocks function small_pref_entry_test(switches) rng = MersenneTwister(49); @testset "Entry probs" begin F1 = Float64; ce.set_pref_scale!(switches, 0.001); st = ce.make_test_symbol_table(); e = init_entry_decision(ObjectId(:entry), switches, st); # println("\n------------") # println(e); J = n_types(e); nc = n_colleges(e); nl = n_locations(e); vWork_jV, vCollege_jcM = CollegeEntry.values_for_test(rng, J, nc, nl); admitV = [1, 3]; rejectV = [2]; prob_jcM, eVal_jV = entry_probs(e, vWork_jV, vCollege_jcM, admitV; prefShocks = true); @test all(prob_jcM .>= 0.0) @test all(prob_jcM .<= 1.0) @test size(prob_jcM) == (J, nc) @test size(eVal_jV) == (J,) @test all(prob_jcM[:, rejectV] .== 0.0) prob2_jcM, eVal2_jV = entry_probs(e, vWork_jV, vCollege_jcM, admitV; prefShocks = false); @test isapprox(prob_jcM, prob2_jcM, atol = 0.01) @test isapprox(eVal_jV, eVal2_jV, rtol = 0.01) end end function sim_entry_test(switches) @testset "Simulate Entry probs" begin rng = MersenneTwister(123); F1 = Float64; st = ce.make_test_symbol_table(); e = init_entry_decision(ObjectId(:entry), switches, st); # println("\n------------") # println(e); J = n_types(e); nc = n_colleges(e); nl = n_locations(e); vCollege_clM = test_value_cl(rng, nc, nl); vWork = 1.0 .+ sum(vCollege_clM) / length(vCollege_clM); avail_clM = rand(rng, Bool, nc, nl); # Make sure one college is available avail_clM[1,1] = true; prob_clV, eVal = entry_probs(e, vWork, vec(vCollege_clM), vec(avail_clM)); prob_clM = reshape(prob_clV, nc, nl); @test !any(prob_clM[.!avail_clM] .> 0.0) # Tests expected value by simulation nSim = Int(1e5); prob2_clM, eVal2 = CollegeEntry.sim_entry_probs(e, vWork, vCollege_clM, avail_clM, nSim, rng); @test !any(prob2_clM[.!avail_clM] .> 0.0) @test isapprox(eVal, eVal2, atol = 1e-4) # @show eVal, eVal2; @test isapprox(prob_clM, prob2_clM, atol = 0.02) end end function scale_entry_probs_test() rng = MersenneTwister(123); @testset "Scale entry probs" begin J = 30; nl = 4; nc = 5; entryProb_jlcM = make_test_entry_probs(rng, J, nc, nl); minEntryProb = 0.03; maxEntryProb = 0.8; scale_entry_probs!(entryProb_jlcM, minEntryProb, maxEntryProb); entryProb_jlM = sum(entryProb_jlcM, dims = 3); @test all(entryProb_jlM .< maxEntryProb + 0.01) @test all(entryProb_jlcM .> 0.0) # With probs in range, nothing should change entryProb_jlcM = fill(minEntryProb + 0.01, J, nl, nc); entryProb2_jlcM = copy(entryProb_jlcM); scale_entry_probs!(entryProb_jlcM, minEntryProb, maxEntryProb); @test isapprox(entryProb_jlcM, entryProb2_jlcM) end end @testset "All" begin constructor_test() scale_entry_probs_test(); J = 8; nc = 3; for switches in test_entry_switches(J, nc) access_test(switches); subset_switches_test(switches); for prefShocks ∈ (true, false) entry_test(switches, prefShocks); small_pref_entry_test(switches); end sim_entry_test(switches); end end # --------------
proofpile-julia0005-42450
{ "provenance": "014.jsonl.gz:242451" }
abstract type SDEIntegratorCache{DT,D,M} <: IntegratorCache{DT,D} end abstract type PSDEIntegratorCache{DT,D,M} <: IntegratorCache{DT,D} end
proofpile-julia0005-42451
{ "provenance": "014.jsonl.gz:242452" }
abstract type AbstractThrustCoefficientModel end """ ThrustModelConstantCt(ct::Float) Stores a constant ct value for wake calculations # Arguments - `ct::Float`: a constant ct value for computation """ struct ThrustModelConstantCt{TF} <: AbstractThrustCoefficientModel ct::TF end """ ThrustModelCtPoints(vel_points, ct_points) Stores the thrust coefficient curve in terms of corresponding velocity and thrust coefficient points. ct and velocity points should be in the same order and ordered from lowest wind speed to highest wind speed. # Arguments - `inflow_velocity::Float`: inflow velocity of the wind turbine - `thrust_model::ThrustModelCtPoints`: Struct containing ct and velocity points for ct curve """ struct ThrustModelCtPoints{ATF} <: AbstractThrustCoefficientModel vel_points::ATF ct_points::ATF end """ calculate_ct(model::ThrustModelConstantCt) Calculate the thrust coefficient for a wind turbine based on a pre-determined constant ct # Arguments - `inflow_velocity::Float`: inflow velocity of the wind turbine (unused for const. ct) - `thrust_model::ThrustModelConstantCt`: struct containing a constant ct value for computation """ function calculate_ct(inflow_velocity, thrust_model::ThrustModelConstantCt) return thrust_model.ct end """ calculate_ct(inflow_velocity, thrust_model::ThrustModelCtPoints) Calculate the thrust coefficient for a wind turbine based on a pre-determined ct curve with linear interpolation. # Arguments - `inflow_velocity::Float`: inflow velocity of the wind turbine - `thrust_model::ThrustModelCtPoints`: Struct containing ct and velocity points for ct curve """ function calculate_ct(inflow_velocity, thrust_model::ThrustModelCtPoints) minv = thrust_model.vel_points[1] maxv = thrust_model.vel_points[end] minct = thrust_model.ct_points[1] maxct = thrust_model.ct_points[end] if inflow_velocity < minv ct = minct elseif inflow_velocity < maxv ct = linear(thrust_model.vel_points, thrust_model.ct_points, inflow_velocity) else ct = maxct end if ct > 1 ct = 1.0 end return ct end """ _ct_to_axial_ind_func(ct) Calculate axial induction from the thrust coefficient # Arguments - `ct::Float`: thrust coefficient """ function _ct_to_axial_ind_func(ct) # initialize axial induction to zero axial_induction = 0.0 # calculate axial induction if ct > 0.96 # Glauert condition axial_induction = 0.143 + sqrt(0.0203 - 0.6427*(0.889 - ct)) else axial_induction = 0.5*(1.0 - sqrt(1.0 - ct)) end return axial_induction end
proofpile-julia0005-42452
{ "provenance": "014.jsonl.gz:242453" }
using CRCBS using GraphUtils using TOML using Test, Logging using Parameters """ FatPathsSolver{S} A simple wrapper around a MAPF solver so that profile_solver! will dispatch correctly (by transforming adding the fat paths cost to the problem before solving it). """ @with_kw struct FatPathsSolver{S,M} <: SolverWrapper solver::S = CBSSolver(AStar{NTuple{2,Float64}}()) fat_path_cost_model::M = FlatFPCost() end function CRCBS.profile_solver!(solver::FatPathsSolver,mapf) fp_mapf = CRCBS.init_fat_path_mapf(mapf,solver.fat_path_cost_model) CRCBS.profile_solver!(solver.solver,fp_mapf) end # CRCBS.get_logger(solver::FatPathsSolver) = get_logger(solver.solver) # CRCBS.low_level(solver::FatPathsSolver) = low_level(solver.solver) # Problem Instances base_scen_path = joinpath(ENV["HOME"],"Repos/mapf_benchmarks/scenarios") map_path = joinpath(ENV["HOME"],"Repos/mapf_benchmarks/maps/") results_path = "/scratch/mapf_experiments" EXPERIMENTS_DIR = "/scratch/mapf_experiments/fat_path_experiments" PROBLEM_DIR = joinpath(EXPERIMENTS_DIR,"problems") RESULTS_DIR = joinpath(EXPERIMENTS_DIR,"results") config = ( solver_configs = [ ( solver=CBSSolver(), results_path=joinpath(RESULTS_DIR,"CBSSolver") ), ( solver=FatPathsSolver(), results_path=joinpath(RESULTS_DIR,"FatPathsSolver") ), ( solver=FatPathsSolver(fat_path_cost_model=NormalizedFPCost()), results_path=joinpath(RESULTS_DIR,"NormalizedFatPathsSolver") ), ], problem_dir = PROBLEM_DIR, feats = [ RunTime(),IterationCount(),SolutionCost(),NumConflicts(),RobotPaths(), RobotSeparation(), TimeOutStatus(),IterationMaxOutStatus(), # MemAllocs(),ByteCount() ] ) for solver_config in config.solver_configs set_runtime_limit!(solver_config.solver,50) set_verbosity!(solver_config.solver,1) set_iteration_limit!(solver_config.solver,10000) set_iteration_limit!(low_level(solver_config.solver),1000) end # scen_paths = get_files_matching(base_scen_path,".scen",["Berlin_1_256","Paris_1_256"]) scen_paths = get_files_matching(base_scen_path,".scen",[ "empty-8-8-even", # "empty-16-16-even", # "empty-32-32-even", # "empty-48-48-even", ]) BenchmarkInterface.generate_problem_files_from_moving_ai( scen_paths, # [joinpath(base_scen_path,"scen-even","empty-8-8-even-10.scen")], map_path, PROBLEM_DIR ) loader = BenchmarkInterface.init_mapf_loader(PROBLEM_DIR) BenchmarkInterface.profile_with_skipping!(config,loader) # run_profiling(config,loader)
proofpile-julia0005-42453
{ "provenance": "014.jsonl.gz:242454" }
using Test using TestSetExtensions using LinearAlgebra using Qaintessent using SparseArrays using StatsBase ##==---------------------------------------------------------------------------------------------------------------------- isunitary(cg::CircuitGate) = (sparse_matrix(cg) * sparse_matrix(Base.adjoint(cg)) ≈ I) @testset ExtendedTestSet "circuit gates" begin θ = 0.7 * π ϕ = 0.4 * π n = randn(3); n /= norm(n) # single qubit gates @testset "single qubit circuit gates" begin for g in [X, Y, Z, HadamardGate(), SGate(), TGate(), RxGate(θ), RyGate(θ), RzGate(θ), RotationGate(θ, n), PhaseShiftGate(ϕ)] cg = CircuitGate((2,), g) cgadj = adjoint(cg) Qaintessent.sparse_matrix(cgadj.gate) == adjoint(Qaintessent.sparse_matrix(cg.gate)) @test LinearAlgebra.ishermitian(cg) == (Qaintessent.sparse_matrix(cg) == Qaintessent.sparse_matrix(adjoint(cg))) end cgs = circuit_gate.((2,), [X, Y, Z, HadamardGate(), SGate(), TGate(), RxGate(θ), RyGate(θ), RzGate(θ), RotationGate(θ, n), PhaseShiftGate(ϕ)]) @test all(sparse_matrix(adjoint(cgs)) .≈ adjoint(sparse_matrix(cgs))) end # two qubit gates @testset "two qubit circuit gates" begin for g in [EntanglementXXGate(θ), EntanglementYYGate(θ), EntanglementZZGate(θ), controlled_not(), SwapGate()] cg = CircuitGate((2, 3), g) cgadj = adjoint(cg) Qaintessent.sparse_matrix(cgadj.gate) == adjoint(Qaintessent.sparse_matrix(cg.gate)) @test LinearAlgebra.ishermitian(cg) == (Qaintessent.sparse_matrix(cg) == Qaintessent.sparse_matrix(adjoint(cg))) end end # Y acting on second wire @testset "apply circuit gate to second wire" begin cg = CircuitGate((2,), Y) @test Qaintessent.sparse_matrix(cg, 3) ≈ kron(Matrix(I, 2, 2), Qaintessent.matrix(Y), Matrix(I, 2, 2)) @test isunitary(cg) end # flip control and target @testset "flip control and target circuit gate" begin cg = CircuitGate((2, 1), controlled_not()) @test Qaintessent.sparse_matrix(cg) ≈ [1 0 0 0; 0 0 0 1; 0 0 1 0; 0 1 0 0] @test isunitary(cg) end # third qubit as control and first qubit as target @testset "shift control and target circuit gate" begin cg = circuit_gate(1, HadamardGate(), 3) @test Qaintessent.sparse_matrix(cg) ≈ [ Matrix(I, 4, 4) fill(0, 4, 2) fill(0, 4, 2); fill(0, 2, 4) Qaintessent.matrix(HadamardGate()) fill(0, 2, 2); fill(0, 2, 6) Qaintessent.matrix(HadamardGate())] @test isunitary(cg) end @testset "circuit gate exceptions" begin H = HadamardGate() S = SwapGate() N = 2 @test_throws ErrorException("SwapGate affects 2 wires but 0 wires, (), were passed.") CircuitGate{0,SwapGate}(NTuple{0,Int}(), S) @test_throws ErrorException("Wire indices must be unique.") CircuitGate{2,SwapGate}((1, 1), S) @test_throws ErrorException("Wire index cannot be smaller than 1.") CircuitGate{2,SwapGate}((1, -1), S) end end ##==---------------------------------------------------------------------------------------------------------------------- @testset ExtendedTestSet "circuit gate isapprox" begin θ = 0.7 * π ϕ = 0.4 * π n = randn(3); n /= norm(n) ϵ = 3*sqrt(eps()) sqg = [RxGate(θ), RyGate(θ), RzGate(θ), RotationGate(θ, n), PhaseShiftGate(ϕ)] sqḡ = [RxGate(θ + eps()), RyGate(θ + eps()), RzGate(θ + eps()), RotationGate(θ + eps(), n), PhaseShiftGate(ϕ + eps())] sqĝ = [RxGate(θ + ϵ), RyGate(θ + ϵ), RzGate(θ + ϵ), RotationGate(θ + ϵ, n), PhaseShiftGate(ϕ + ϵ)] for (i, g) in enumerate(sqg) cg1 = CircuitGate((2,), sqg[i]) cg2 = CircuitGate((2,), sqḡ[i]) cg3 = CircuitGate((2,), sqĝ[i]) @test cg1 ≈ cg2 @test !(cg1 ≈ cg3) end end ##==---------------------------------------------------------------------------------------------------------------------- @testset ExtendedTestSet "circuit gate helper functions" begin N = 5 @testset ExtendedTestSet "circuit gate single qubit helper function" begin iwire = rand(1:N) g = XGate() @test circuit_gate(iwire, g) ≈ CircuitGate((iwire,), g) end @testset "circuit gate two qubit helper function" begin iwire1 = rand(1:N) iwire2 = rand(vcat(1:iwire1 - 1..., iwire1 + 1:N...)) g2 = SwapGate() @test circuit_gate(iwire1, iwire2, g2) ≈ CircuitGate((iwire1, iwire2), g2) end @testset "circuit gate controlled gate helper function" begin cntrl_iwire1, cntrl_iwire2, targ_iwire1, targ_iwire2 = sample(1:N, 4, replace=false) g = YGate() ref_cg = CircuitGate((targ_iwire1, cntrl_iwire1), ControlledGate(g, 1)) @test circuit_gate(targ_iwire1, g, cntrl_iwire1) ≈ ref_cg @test circuit_gate(targ_iwire1, g, (cntrl_iwire1,)) ≈ ref_cg @test circuit_gate((targ_iwire1,), g, cntrl_iwire1) ≈ ref_cg @test circuit_gate((targ_iwire1,), g, (cntrl_iwire1,)) ≈ ref_cg g = SwapGate() ref_cg2 = CircuitGate((targ_iwire1, targ_iwire2, cntrl_iwire1), ControlledGate(g, 1)) @test circuit_gate(targ_iwire1, targ_iwire2, g, cntrl_iwire1) ≈ ref_cg2 @test circuit_gate(targ_iwire1, targ_iwire2, g, (cntrl_iwire1,)) ≈ ref_cg2 @test circuit_gate((targ_iwire1, targ_iwire2), g, cntrl_iwire1) ≈ ref_cg2 @test circuit_gate((targ_iwire1, targ_iwire2), g, (cntrl_iwire1,)) ≈ ref_cg2 ref_cg3 = CircuitGate((targ_iwire1, targ_iwire2, cntrl_iwire1, cntrl_iwire2), ControlledGate(g, 2)) @test circuit_gate(targ_iwire1, targ_iwire2, g, cntrl_iwire1, cntrl_iwire2) ≈ ref_cg3 @test circuit_gate(targ_iwire1, targ_iwire2, g, (cntrl_iwire1, cntrl_iwire2)) ≈ ref_cg3 @test circuit_gate((targ_iwire1, targ_iwire2), g, cntrl_iwire1, cntrl_iwire2) ≈ ref_cg3 @test circuit_gate((targ_iwire1, targ_iwire2), g, (cntrl_iwire1, cntrl_iwire2)) ≈ ref_cg3 end # test sparse_matrix @testset "circuit gates sparse matrix" begin cgs = [circuit_gate(1, X), circuit_gate(2, X), circuit_gate(3, X)] m = sparse_matrix(cgs) @test m ≈ sparse([8, 7, 6, 5, 4, 3, 2, 1], [1, 2, 3, 4, 5, 6, 7, 8], Float64[1, 1, 1, 1, 1, 1, 1, 1]) end # test sparse_matrix @testset "circuit gates sparse matrix exceptions" begin cgs = [circuit_gate(1, X), circuit_gate(2, X), circuit_gate(3, X)] @test_throws ErrorException("Circuit size `2` too small; vector of CircuitGate requires 3 wires.") sparse_matrix(cgs, 2) end end
proofpile-julia0005-42454
{ "provenance": "014.jsonl.gz:242455" }
abstract type Estimator end Base.iterate(estimator::Estimator, state = 0) = state > 0 ? nothing : (estimator, state + 1) Base.length(estimator::Estimator) = 1 Base.show(io::IO, estimator::Estimator) = print(io, string(estimator)) Base.show(io::IO, ::MIME"application/prs.juno.inline", estimator::Estimator) = print(io, string(estimator)) (::Estimator)(x1::Integer, x2::Integer, design::AbstractDesign) = error("not implemented") function estimate(estimator::TE, x1::TI, x2::TI, design::TD) where {TE<:Estimator,TI<:Integer,TD<:AbstractDesign} return estimator(x1, x2, design) end string(estimator::Estimator) = error("not implemented") function bias(p::Real, estimator::Estimator, design::AbstractDesign) 0 <= p <= 1 ? nothing : error("p must be between 0 and 1") XX = sample_space(design) x1, x2 = XX[:,1], XX[:,2] return (estimator.(x1, x2, design) .- p) .* pmf.(x2, n2.(design, x1), p) .* pmf.(x1, n1(design), p) |> sum end function mean_squared_error(p::Real, estimator::Estimator, design::AbstractDesign) 0 <= p <= 1 ? nothing : error("p must be between 0 and 1") XX = sample_space(design) x1, x2 = XX[:,1], XX[:,2] return (estimator.(x1, x2, design) .- p).^2 .* pmf.(x2, n2.(design, x1), p) .* pmf.(x1, n1(design), p) |> sum end function mean_absolute_error(p::Real, estimator::Estimator, design::AbstractDesign) 0 <= p <= 1 ? nothing : error("p must be between 0 and 1") XX = sample_space(design) x1, x2 = XX[:,1], XX[:,2] return abs.(estimator.(x1, x2, design) .- p) .* pmf.(x2, n2.(design, x1), p) .* pmf.(x1, n1(design), p) |> sum end
proofpile-julia0005-42455
{ "provenance": "014.jsonl.gz:242456" }
module Mod1DynamicDefinition using ValidatedNumerics using ..DynamicDefinition, ..Contractors using ..DynamicDefinition: derivative export Mod1Dynamic, preim, nbranches, plottable """ Defines a Dynamic on [0,1] as the Mod-1 quotient of a given map. An alternative newer implementation relying on piecewise-defined functions is in `mod1_dynamic` """ struct Mod1Dynamic{FT} <: MarkovDynamic T::FT nbranches::Int orientation::Float64 domain::Interval{Float64} is_full_branch::Bool end Mod1Dynamic(T::FT, nbranches = undef, domain = Interval{Float64}(0,1)) where {FT} = Mod1Dynamic{FT}(T, nbranches, domain) function Mod1Dynamic{FT}(T, nbranches = undef, domain = Interval{Float64}(0,1)) where {FT} @assert domain == 0..1 # TODO: this only works for domain == 0..1, for now range_diff = T(@interval(1.))-T(@interval(0.)) orientation = unique_sign(range_diff) nbranches = ceil(orientation * range_diff).hi is_full_branch = isinteger(T(0..0)) & isinteger(T(1..1)) return Mod1Dynamic{FT}(T, nbranches, orientation, domain, is_full_branch) end DynamicDefinition.domain(S::Mod1Dynamic{FT}) where {FT} = S.domain DynamicDefinition.nbranches(S::Mod1Dynamic{FT}) where {FT} =S.nbranches DynamicDefinition.is_full_branch(S::Mod1Dynamic{FT}) where {FT} = S.is_full_branch # TODO: serious doubts that this works if T(0) is not an integer... function DynamicDefinition.preim(D::Mod1Dynamic{FT}, k, y, ϵ) where {FT} # we need to treat the case with the other orientation, 0 not fixed point... @assert 1 <= k <= D.nbranches f(x) = D.T(x)-D.T(0)-(y-D.T(0)+(k-1)*D.orientation) root(f, D.domain, ϵ) end DynamicDefinition.derivative(n, D::Mod1Dynamic{FT}, x) where {FT} = derivative(n, D.T, x) DynamicDefinition.distorsion(D::Mod1Dynamic{FT}, x) where {FT} = distorsion(D.T, x) DynamicDefinition.max_distorsion(D::Mod1Dynamic{FT}, tol=1e-3) where {FT} = maximise(x -> distorsion(D.T, x), domain(D), tol=tol)[1] DynamicDefinition.expansivity(D::Mod1Dynamic{FT}, tol=1e-3) where {FT} = maximise(x -> abs(1/derivative(D, x)), domain(D), tol=tol)[1] function DynamicDefinition.plottable(D::Mod1Dynamic{FT}, x) where {FT} @assert 0 <= x <= 1 return mod(D.T(x), 1.) end using RecipesBase @recipe f(::Type{Mod1Dynamic{FT}}, D::Mod1Dynamic{FT}) where {FT} = x -> plottable(D, x) orientation(D::Mod1Dynamic, k) = D.orientation end
proofpile-julia0005-42456
{ "provenance": "014.jsonl.gz:242457" }
const berstandata = [ Dict( "N" => 10, "y" => [0,1,0,0,0,0,0,0,0,1] ) ]
proofpile-julia0005-42457
{ "provenance": "014.jsonl.gz:242458" }
mutable struct MinimaxObjectiveCore points::Vector{Float64} targets::Vector{Float64} IIF::Matrix{Float64} MinimaxObjectiveCore() = new(Vector{Float64}(), Vector{Float64}(), Matrix{Float64}(undef, 0, 0)) end
proofpile-julia0005-42458
{ "provenance": "014.jsonl.gz:242459" }
#!/usr/bin/env julia # Reproduce the VTK_BEZIER_TETRA_quartic_solidSphereOctant.vtu file from the VTK # test suite. using WriteVTK using Test const VTK_BASENAME = "bezier_tetra_quartic_solidSphereOctant" function main() cell_type = VTKCellTypes.VTK_BEZIER_TETRAHEDRON # Copied from VTK generated file. points_in = [ 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0.4226497411727905, 0, 0.7886751294136047, 0.7886751294136047, 0, 0.4226497411727905, 1, 0, 0, 1, 0.4226497411727905, 0, 0.7886751294136047, 0.7886751294136047, 0, 0.4226497411727905, 1, 0.4226497411727905, 0, 1, 0.7886751294136047, 0, 0.7886751294136047, 1, 0, 0.4226497411727905, 0.75, 0, 0, 0.5, 0, 0, 0.25, 0, 0, 0, 0.75, 0, 0, 0.5, 0, 0, 0.25, 0, 0, 0, 0.75, 0, 0, 0.5, 0, 0, 0.25, 0.5, 0.25, 0, 0.25, 0.5, 0, 0.25, 0.25, 0, 0, 0.25, 0.5, 0, 0.25, 0.25, 0, 0.5, 0.25, 0.5, 0, 0.25, 0.25, 0, 0.25, 0.25, 0, 0.5, 1, 0.5893534421920776, 0.5893534421920776, 0.5893534421920776, 0.5893534421920776, 1, 0.5893534421920776, 1, 0.5893534421920776, 0.30000001192092896, 0.30000001192092896, 0.30000001192092896, ] points = reshape(points_in, 3, :) connectivity = 1:size(points, 2) rational_weights = [ 1, 1, 1, 1, 0.8365163037378083, 0.7886751345948131, 0.8365163037378083, 0.8365163037378083, 0.7886751345948131, 0.8365163037378083, 0.8365163037378083, 0.7886751345948131, 0.8365163037378083, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.6594659464934113, 0.6594659464934113, 0.6594659464934113, 1, ] cells = [MeshCell(cell_type, connectivity)] outfiles = vtk_grid(VTK_BASENAME, points, cells) do vtk vtk["RationalWeights"] = rational_weights end println("Saved: ", join(outfiles, " ")) outfiles end main()
proofpile-julia0005-42459
{ "provenance": "014.jsonl.gz:242460" }
using CairoMakie using Colors using Makie.GeometryBasics using JLD2 training_data = [ (-5e-4, 5e-8), (-3.5e-4, 5e-8), (-2e-4, 5e-8), ] train_files = [ "wind_-5e-4_diurnal_5e-8" "wind_-3.5e-4_diurnal_5e-8" "wind_-2e-4_diurnal_5e-8" ] interpolating_data = [ (-4.5e-4, 4e-8), (-4.5e-4, 2e-8), (-3e-4, 4e-8), (-3e-4, 2e-8), ] interpolating_files = [ "wind_-4.5e-4_diurnal_4e-8" "wind_-4.5e-4_diurnal_2e-8" "wind_-3e-4_diurnal_4e-8" "wind_-3e-4_diurnal_2e-8" ] extrapolating_data_diurnal = [ (-5.5e-4, 5.5e-8), (-1.5e-4, 5.5e-8), ] extrapolating_diurnal_files = [ "wind_-5.5e-4_diurnal_5.5e-8" "wind_-1.5e-4_diurnal_5.5e-8" ] extrapolating_data = [ (-1.5e-4, 3.5e-8), (-5.5e-4, 3.5e-8), (-5.5e-4, 0), (-5.5e-4, -3.5e-8), (-1.5e-4, -3.5e-8), ] extrapolating_files = [ "wind_-1.5e-4_cooling_3.5e-8" "wind_-5.5e-4_cooling_3.5e-8" "wind_-5.5e-4_new" "wind_-5.5e-4_heating_-3.5e-8" "wind_-1.5e-4_heating_-3.5e-8" ] momentum_fluxes_training = [data[1] for data in training_data] buoyancy_fluxes_training = [data[2] for data in training_data] momentum_fluxes_interpolating = [data[1] for data in interpolating_data] buoyancy_fluxes_interpolating = [data[2] for data in interpolating_data] momentum_fluxes_extrapolating = [data[1] for data in extrapolating_data] buoyancy_fluxes_extrapolating = [data[2] for data in extrapolating_data] momentum_fluxes_extrapolating_diurnal = [data[1] for data in extrapolating_data_diurnal] buoyancy_fluxes_extrapolating_diurnal = [data[2] for data in extrapolating_data_diurnal] fig = CairoMakie.Figure(resolution=(1000, 650)) ax =fig[1,1] = CairoMakie.Axis(fig, xlabel="Buoyancy Flux / m² s⁻³", ylabel="Momentum Flux / m² s⁻²") color_palette = distinguishable_colors(4, [RGB(1,1,1), RGB(0,0,0)], dropseed=true) rectangle = CairoMakie.poly!(ax, Point2f0[(-5e-8, -2e-4), (-5e-8, -5e-4), (5e-8, -5e-4), (5e-8, -2e-4)], color=("paleturquoise3", 0.5)) training_lines = [CairoMakie.lines!(ax, [-buoyancy_fluxes_training[i], buoyancy_fluxes_training[i]], [momentum_fluxes_training[i], momentum_fluxes_training[i]], color=color_palette[1]) for i in 1:length(training_data)] interpolating_lines = [CairoMakie.lines!(ax, [-buoyancy_fluxes_interpolating[i], buoyancy_fluxes_interpolating[i]], [momentum_fluxes_interpolating[i], momentum_fluxes_interpolating[i]], color=color_palette[2]) for i in 1:length(interpolating_data)] extrapolating_lines = [CairoMakie.lines!(ax, [-buoyancy_fluxes_extrapolating_diurnal[i], buoyancy_fluxes_extrapolating_diurnal[i]], [momentum_fluxes_extrapolating_diurnal[i], momentum_fluxes_extrapolating_diurnal[i]], color=color_palette[3]) for i in 1:length(extrapolating_data_diurnal)] extrapolating_points = CairoMakie.scatter!(ax, buoyancy_fluxes_extrapolating, momentum_fluxes_extrapolating, color=color_palette[3]) # diurnal_line_1 = CairoMakie.lines!(ax, [-5.5e-8, 5.5e-8], [-1.5e-4, -1.5e-4], color=color_palette[4]) # diurnal_line_2 = CairoMakie.lines!(ax, [-5.5e-8, 5.5e-8], [-5.5e-4, -5.5e-4], color=color_palette[4]) # # diurnal_points = CairoMakie.scatter!(ax, buoyancy_fluxes_diurnal, momentum_fluxes_diurnal, color=color_palette[4]) legend = fig[2,1] = CairoMakie.Legend(fig, [training_lines[1], interpolating_lines[1], extrapolating_lines[1], extrapolating_points, rectangle], ["Training", "Interpolating", "Extrapolating", "Constant Fluxes", "Interpolation Region"], orientation=:horizontal) rowsize!(fig.layout, 1, CairoMakie.Relative(0.95)) trim!(fig.layout) fig save("final_results/data_diurnal.png", fig, px_per_unit = 4) T_loss(data) = sum(data) / 1153 losses_training = [] for train_file in train_files file = jldopen("final_results/3sim_diurnal/train_$(train_file)/profiles_fluxes_oceananigans.jld2") data = file["NDE_profile"] close(file) loss = T_loss(data["T_losses"]) loss_mpp = T_loss(data["T_losses_modified_pacanowski_philander"]) loss_kpp = T_loss(data["T_losses_kpp"]) loss_min = argmin([loss, loss_mpp, loss_kpp]) loss_str = ["NDE", "mpp", "kpp"] push!(losses_training, loss_str[loss_min]) end losses_training losses_interpolating = [] for interpolating_file in interpolating_files file = jldopen("final_results/3sim_diurnal/test_$(interpolating_file)/profiles_fluxes_oceananigans.jld2") data = file["NDE_profile"] close(file) loss = T_loss(data["T_losses"]) loss_mpp = T_loss(data["T_losses_modified_pacanowski_philander"]) loss_kpp = T_loss(data["T_losses_kpp"]) @show loss, loss_mpp, loss_kpp loss_min = argmin([loss, loss_mpp, loss_kpp]) loss_str = ["NDE", "mpp", "kpp"] push!(losses_interpolating, loss_str[loss_min]) end losses_interpolating losses_extrapolating = [] for extrapolating_file in extrapolating_files file = jldopen("final_results/3sim_diurnal/test_$(extrapolating_file)/profiles_fluxes_oceananigans.jld2") data = file["NDE_profile"] close(file) loss = T_loss(data["T_losses"]) loss_mpp = T_loss(data["T_losses_modified_pacanowski_philander"]) loss_kpp = T_loss(data["T_losses_kpp"]) @show loss, loss_mpp, loss_kpp loss_min = argmin([loss, loss_mpp, loss_kpp]) loss_str = ["NDE", "mpp", "kpp"] push!(losses_extrapolating, loss_str[loss_min]) end losses_extrapolating losses_extrapolating_diurnal = [] for diurnal_file in extrapolating_diurnal_files file = jldopen("final_results/3sim_diurnal/test_$(diurnal_file)/profiles_fluxes_oceananigans.jld2") data = file["NDE_profile"] close(file) loss = T_loss(data["T_losses"]) loss_mpp = T_loss(data["T_losses_modified_pacanowski_philander"]) loss_kpp = T_loss(data["T_losses_kpp"]) @show loss, loss_mpp, loss_kpp loss_min = argmin([loss, loss_mpp, loss_kpp]) loss_str = ["NDE", "mpp", "kpp"] push!(losses_extrapolating_diurnal, loss_str[loss_min]) end losses_extrapolating_diurnal fig = CairoMakie.Figure(resolution=(1000, 650)) ax =fig[1,1] = CairoMakie.Axis(fig, xlabel="Buoyancy Flux / m² s⁻³", ylabel="Momentum Flux / m² s⁻²") color_palette = distinguishable_colors(4, [RGB(1,1,1), RGB(0,0,0)], dropseed=true) loss_colors = Dict( "NDE" => color_palette[1], "mpp" => color_palette[3], "kpp" => color_palette[4], ) rectangle = CairoMakie.poly!(ax, Point2f0[(-5e-8, -2e-4), (-5e-8, -5e-4-3f-6), (5e-8, -5e-4-3f-6), (5e-8, -2e-4)], color=("paleturquoise3", 0.5)) NDE_line = CairoMakie.lines!(ax, [buoyancy_fluxes_training[1], buoyancy_fluxes_training[1]], [momentum_fluxes_training[1], momentum_fluxes_training[1]], color=loss_colors["NDE"]) mpp_line = CairoMakie.lines!(ax, [buoyancy_fluxes_training[1], buoyancy_fluxes_training[1]], [momentum_fluxes_training[1], momentum_fluxes_training[1]], color=loss_colors["mpp"]) kpp_line = CairoMakie.lines!(ax, [buoyancy_fluxes_training[1], buoyancy_fluxes_training[1]], [momentum_fluxes_training[1], momentum_fluxes_training[1]], color=loss_colors["kpp"]) training_lines = [CairoMakie.lines!(ax, [-buoyancy_fluxes_training[i], buoyancy_fluxes_training[i]], [momentum_fluxes_training[i], momentum_fluxes_training[i]], color=loss_colors[losses_training[i]]) for i in 1:length(losses_training)] interpolating_lines = [CairoMakie.lines!(ax, [-buoyancy_fluxes_interpolating[i], buoyancy_fluxes_interpolating[i]], [momentum_fluxes_interpolating[i], momentum_fluxes_interpolating[i]], color=loss_colors[losses_interpolating[i]]) for i in 1:length(losses_interpolating)] extrapolating_lines = [CairoMakie.lines!(ax, [-buoyancy_fluxes_extrapolating[i], buoyancy_fluxes_extrapolating[i]], [momentum_fluxes_extrapolating[i], momentum_fluxes_extrapolating[i]], color=loss_colors[losses_extrapolating[i]]) for i in 1:length(losses_extrapolating_diurnal)] extrapolating_points = [CairoMakie.scatter!(ax, [buoyancy_fluxes_extrapolating[i]], [momentum_fluxes_extrapolating[i]], color=loss_colors[losses_extrapolating[i]]) for i in 1:length(losses_extrapolating)] # training_points = [CairoMakie.scatter!(ax, [buoyancy_fluxes_training[i]], [momentum_fluxes_training[i]], color=loss_colors[losses_training[i]]) for i in 1:length(losses_training)] # interpolating_points = [CairoMakie.scatter!(ax, [buoyancy_fluxes_interpolating[i]], [momentum_fluxes_interpolating[i]], color=loss_colors[losses_interpolating[i]]) for i in 1:length(losses_interpolating)] # extrapolating_points = [CairoMakie.scatter!(ax, [buoyancy_fluxes_extrapolating[i]], [momentum_fluxes_extrapolating[i]], color=loss_colors[losses_extrapolating[i]]) for i in 1:length(losses_extrapolating)] # # extrapolating_points = CairoMakie.scatter!(ax, buoyancy_fluxes_extrapolating, momentum_fluxes_extrapolating, color=color_palette[3]) # diurnal_line_1 = CairoMakie.lines!(ax, [-5.5e-8, 5.5e-8], [-5.5e-4, -5.5e-4], color=loss_colors[losses_diurnal[1]]) # diurnal_line_2 = CairoMakie.lines!(ax, [-5.5e-8, 5.5e-8], [-1.5e-4, -1.5e-4], color=loss_colors[losses_diurnal[2]]) legend = fig[2,1] = CairoMakie.Legend(fig, [mpp_line, kpp_line, NDE_line], ["Ri-based Diffusivity Only", "K-Profile Parameterisation", "NN Embedded in Oceananigans.jl"], orientation=:horizontal) rowsize!(fig.layout, 1, CairoMakie.Relative(0.95)) trim!(fig.layout) fig save("final_results/data_diurnal_loss_results.png", fig, px_per_unit = 4)
proofpile-julia0005-42460
{ "provenance": "014.jsonl.gz:242461" }
# using Pipe using Test _macroexpand(q) = macroexpand(Main, q) rml! = Base.remove_linenums! # performs linenum removal and temp variable replacing to avoid different names of temp variables in different julia versions stringify_expr(e::Expr) = replace(string(rml!(e)), r"##\d{3}" => "##000") pipe_equals(e1::Expr, e2::Expr) = stringify_expr(_macroexpand(e1)) == stringify_expr(e2) @testset "`_` 1st location" begin @test _macroexpand(:(@pipe a |> b(x))) == :((b(a, x))) #applying to function calls returning functions @test _macroexpand(:(@pipe a |> bb[2])) == :(bb[a, 2]) #Should work with RHS that is a array reference @test _macroexpand(:(@pipe a |> b(xb, _) |> c |> d(_, xd) |> e(xe) |> f(xf, _, yf) |> _[i])) == :((f(xf, e(d(c(b(xb, a)), xd), xe), yf))[i]) end #Marked locations @testset "Pipe main" begin #No change to nonpipes functionality @test _macroexpand(:(@pipe a)) == :a #doesn't change single inputs @test _macroexpand(:(@pipe b(a))) == :(b(a)) #doesn't change inputs that a function applications #Compatable with Julia 1.3 piping functionality @test _macroexpand(:(@pipe a |> b)) == :(b(a)) #basic @test _macroexpand(:(@pipe a |> b |> c)) == :(c(b(a))) #Keeps chaining 3 @test _macroexpand(:(@pipe a |> b |> c |> d)) == :(d(c(b(a)))) #Keeps chaining 4 # @test _macroexpand( :(@pipe a|>b(x)) ) == :((b(x))(a)) #applying to function calls returning functions @test _macroexpand(:(@pipe a(x) |> b)) == :(b(a(x))) #feeding functioncall results on wards @test _macroexpand(:(@pipe 1 |> a)) == :(a(1)) #Works with literals (int) @test _macroexpand(:(@pipe "foo" |> a)) == :(a("foo")) #Works with literal (string) # @test _macroexpand( :(@pipe a|>bb[2])) == :((bb[2])(a)) #Should work with RHS that is a array reference @test _macroexpand(:(@pipe a |> _)) == :(a) #Identity works @test _macroexpand(:(@pipe a |> _[b])) == :(a[b]) #Indexing works @test _macroexpand(:(@pipe a |> b(_))) == :(b(a)) #Marked location only @test _macroexpand(:(@pipe a |> b(x, _))) == :(b(x, a)) # marked 2nd (and last) @test _macroexpand(:(@pipe a |> b(_, x))) == :(b(a, x)) # marked first @test _macroexpand(:(@pipe a |> b(_, _))) == :(b(a, a)) # marked double (Not certain if this is a good idea) @test _macroexpand(:(@pipe a |> bb[2](x, _))) == :((bb[2])(x, a)) #Should work with RHS that is a array reference end #Macros and blocks macro testmacro(arg, n) esc(:($arg + $n)) end @test _macroexpand(:(@pipe a |> @testmacro _ 3)) == :(a + 3) # Can pipe into macros @test _macroexpand(:(@pipe a |> begin b = _ c + b + _ end)) == :( begin b = a c + b + a end) #marked Unpacking @test _macroexpand(:(@pipe a |> b(_...))) == :(b(a...)) # Unpacking @test _macroexpand(:(@pipe a |> bb[2](_...))) == :((bb[2])(a...)) #Should work with RHS of arry ref and do unpacking #Mixing modes @test _macroexpand(:(@pipe a |> b |> c(_))) == :(c(b(a))) @test _macroexpand(:(@pipe a |> b(x, _) |> c |> d(_, y))) == :(d(c(b(x, a)), y)) # @test _macroexpand( :(@pipe a|>b(xb,_)|>c|>d(_,xd)|>e(xe) |>f(xf,_,yf)|>_[i] ) ) == :(f(xf,(e(xe))(d(c(b(xb,a)),xd)),yf)[i]) #Very Complex # broadcasting @testset "Pipe broadcasting" begin vars = 1:10 .|> y -> gensym() # Julia < 1.3 changes how Symbols are stringified so we compute the representation here @test pipe_equals(:(@pipe 1:10 .|> _ * 2), :(1:10 .|> $(vars[1]) -> $(vars[1]) * 2)) @test pipe_equals(:(@pipe 1:10 .|> fn), :(1:10 .|> $(vars[2]) -> fn($(vars[2])))) @test pipe_equals(:(@pipe a .|> fn .|> _ * 2), :(a .|> ($(vars[3]) -> fn($(vars[3]))) .|> ($(vars[4]) -> $(vars[4]) * 2))) @test pipe_equals(:(@pipe a .|> fn |> _ * 2), :((a .|> $(vars[5]) -> fn($(vars[5]))) * 2)) @test pipe_equals(:(@pipe [1, 2, 2] |> atan.([10, 20, 30], _)), :(atan.([10, 20, 30], [1, 2, 2]))) @test pipe_equals(:(@pipe [1, 2, 2] .|> atan.([10, 20, 30], _)), :([1, 2, 2] .|> $(vars[6]) -> atan.([10, 20, 30], $(vars[6])))) @test pipe_equals(:(@pipe fn |> _.(1:2)), :(fn.(1:2))) @test pipe_equals(:(@pipe fn .|> _.(1:2)), :(fn .|> $(vars[7]) -> $(vars[7]).(1:2))) @test pipe_equals(:(@pipe [true, false] .|> !), :([true, false] .|> $(vars[8]) -> !$(vars[8]))) @test pipe_equals(:(@pipe [1, 2] |> .+(_, x)), :([1, 2] .+ x)) @test pipe_equals(:(@pipe [1, 2] |> _ .+ x), :([1, 2] .+ x)) @test pipe_equals(:(@pipe [1, 2] .|> .+(_, x)), :([1, 2] .|> $(vars[9]) -> $(vars[9]) .+ x)) @test pipe_equals(:(@pipe [1, 2] .|> _ .+ x), :([1, 2] .|> $(vars[10]) -> $(vars[10]) .+ x)) end
proofpile-julia0005-42461
{ "provenance": "014.jsonl.gz:242462" }
using ClusterTrees, BEAST, CompScienceMeshes a, h = 1.0, 0.25 Γ1 = meshsphere(a, h) Γ2 = CompScienceMeshes.translate(Γ1, point(2.1,0,0)) X1 = lagrangecxd0(Γ1) X2 = lagrangecxd0(Γ2) p = positions(X1) q = positions(X2) p, tp, permp = clustertree(p) q, tq, permq = clustertree(q) function adm(b) # p and q are passed in implicitly nmin = 20 I = b[1][1].begin_idx : b[1][1].end_idx-1 J = b[2][1].begin_idx : b[2][1].end_idx-1 length(I) < nmin && return true length(J) < nmin && return true ll1, ur1 = ClusterTrees.boundingbox(p[I]); c1 = (ll1+ur1)/2; ll2, ur2 = ClusterTrees.boundingbox(q[J]); c2 = (ll2+ur2)/2; diam1 = norm(ur1-c1) diam2 = norm(ur2-c2) dist12 = norm(c2-c1) return dist12 >= η*max(diam1, diam2) end blocktree, η = (tp,tq), 2.0 P = admissable_partition(blocktree, adm) # sanity check on the tree for (τ,σ) in P tree_size = 0 depthfirst(τ) do c,l tree_size += 1 end @assert τ[1].num_children+1 == tree_size end depthfirst(tp) do τ,l I = τ[1].begin_idx : τ[1].end_idx-1 for c in children(τ) J = c[1].begin_idx : c[1].end_idx-1 @assert J ⊆ I end end # gather all the observer clusters that participate in an interaction pair Q = Vector{typeof(P[1][1])}() for (i,p) in enumerate(P) τ1, _ = p[1], p[2] I = τ1[1].begin_idx : τ1[1].end_idx-1 descendant = false for q in P τ2, _ = q[1], q[2] J = τ2[1].begin_idx : τ2[1].end_idx-1 # Can τ2 be reached from τ1? descendant = ((J != I) && (J ⊆ I)) !isempty(intersect(I,J)) && !(J ⊆ I) && !(I ⊆ J) && (@show I J) descendant && break end !descendant && push!(Q,τ1) end Q = unique(Q) length(Q) length(P) balance = zeros(numfunctions(X1)) for q in Q I = q[1].begin_idx : q[1].end_idx-1 balance[permp[I]] .+= 1 end @show extrema(balance) using MATLAB mat"figure()" mat"hold("on")" V = [v[i] for v in Γ1.vertices, i in 1:3] F = [f[i] for f in Γ1.faces, i in 1:3] @mput V F for (r,q) in enumerate(Q) I = q[1].begin_idx : q[1].end_idx-1 I = permp[I] @mput I r mat"patch("Vertices",V,"Faces",F[I,:],"FaceColor",rand(3,1))" end ## Another sanity check: everything can be reached from the root for (i,τ) in enumerate(tp) reached = false depthfirst(tp) do st,l st[1] == τ && (reached = true) end if !reached @show τ @show i error() end end
proofpile-julia0005-42462
{ "provenance": "014.jsonl.gz:242463" }
c1 = Patience(1) c2 = InvalidValue() c3 = TimeLimit(t=100) @test Disjunction(c1) == c1 d = c1 + c2 + Never() + c3 + c1 show(d) # codecov: @test zero(typeof(c1)) == Never() @test sum(Disjunction[]) == Never() @test Never() in c1 @testset "_criteria" begin criteria = EarlyStopping._criteria(d) @test length(criteria) == 3 @test issubset([c1, c2, c3], criteria) end @testset "stoppping times" begin d2 = Patience(3) + InvalidValue() @test stopping_time(d2, [12.0, 10.0, 11.0, 12.0, 13.0, NaN]) == 5 @test stopping_time(d2, [NaN, 12.0, 10.0, 11.0, 12.0, 13.0]) == 1 end @testset "message" begin state = EarlyStopping.update(d, NaN) @test EarlyStopping.message(d, state) == "Stopping early as `NaN`, "* "`Inf` or `-Inf` encountered. " end state = EarlyStopping.update(d, 1.0) state = EarlyStopping.update(d, 2.0, state) @test EarlyStopping.message(d, state) == "Stop triggered by Patience(1) stopping criterion. "
proofpile-julia0005-42463
{ "provenance": "014.jsonl.gz:242464" }
export FT_Init_FreeType export FT_Done_FreeType export FT_New_Face export FT_New_Memory_Face export FT_Open_Face export FT_Attach_File export FT_Attach_Stream export FT_Reference_Face export FT_Done_Face export FT_Select_Size export FT_Request_Size export FT_Set_Char_Size export FT_Set_Pixel_Sizes export FT_Load_Glyph export FT_Load_Char export FT_Set_Transform export FT_Render_Glyph export FT_Get_Kerning export FT_Get_Track_Kerning export FT_Get_Glyph_Name export FT_Get_Postscript_Name export FT_Select_Charmap export FT_Set_Charmap export FT_Get_Charmap_Index export FT_Get_Char_Index export FT_Get_First_Char export FT_Get_Next_Char export FT_Get_Name_Index export FT_Get_SubGlyph_Info export FT_Get_FSType_Flags export FT_Face_GetCharVariantIndex export FT_Face_GetCharVariantIsDefault export FT_Face_GetVariantSelectors export FT_Face_GetVariantsOfChar export FT_Face_GetCharsOfVariant export FT_MulDiv export FT_DivFix export FT_RoundFix export FT_CeilFix export FT_FloorFix export FT_Vector_Transform export FT_Library_Version export FT_Face_CheckTrueTypePatents export FT_Face_SetUnpatentedHinting export FT_Outline_Decompose export FT_Int16 export FT_UInt16 export FT_Int32 export FT_UInt32 export FT_Fast export FT_UFast export FT_Memory export FT_Alloc_Func export FT_Free_Func export FT_Realloc_Func export FT_Stream export FT_Stream_IoFunc export FT_Stream_CloseFunc export FT_Pos export FT_Pixel_Mode export FT_Outline_MoveToFunc export FT_Outline_LineToFunc export FT_Outline_ConicToFunc export FT_Outline_CubicToFunc export FT_Glyph_Format export FT_Raster export FT_SpanFunc export FT_Raster_BitTest_Func export FT_Raster_BitSet_Func export FT_Raster_NewFunc export FT_Raster_DoneFunc export FT_Raster_ResetFunc export FT_Raster_SetModeFunc export FT_Raster_RenderFunc export FT_Bool export FT_FWord export FT_UFWord export FT_Char export FT_Byte export FT_Bytes export FT_Tag export FT_String export FT_Short export FT_UShort export FT_Int export FT_UInt export FT_Long export FT_ULong export FT_F2Dot14 export FT_F26Dot6 export FT_Fixed export FT_Error export FT_Pointer export FT_Offset export FT_PtrDist export FT_Generic_Finalizer export FT_ListNode export FT_List export FT_Library export FT_Module export FT_Driver export FT_Renderer export FT_Face export FT_Size export FT_GlyphSlot export FT_CharMap export FT_Encoding export FT_Face_Internal export FT_Size_Internal export FT_SubGlyph export FT_Slot_Internal export FT_Size_Request_Type export FT_Size_Request export FT_Render_Mode export FT_Kerning_Mode export FT_LOAD_DEFAULT export FT_LOAD_TARGET_NORMAL export FT_LOAD_NO_SCALE export FT_LOAD_NO_HINTING export FT_LOAD_RENDER export FT_LOAD_NO_BITMAP export FT_LOAD_VERTICAL_LAYOUT export FT_LOAD_FORCE_AUTOHINT export FT_LOAD_CROP_BITMAP export FT_LOAD_PEDANTIC export FT_LOAD_ADVANCE_ONLY export FT_LOAD_IGNORE_GLOBAL_ADVANCE_WIDTH export FT_LOAD_NO_RECURSE export FT_LOAD_IGNORE_TRANSFORM export FT_LOAD_MONOCHROME export FT_LOAD_LINEAR_DESIGN export FT_LOAD_SBITS_ONLY export FT_LOAD_NO_AUTOHINT export FT_LOAD_TARGET_LIGHT export FT_LOAD_TARGET_MONO export FT_LOAD_TARGET_LCD export FT_LOAD_TARGET_LCD_V export FT_LOAD_COLOR export FT_FACE_FLAG_SCALABLE export FT_FACE_FLAG_FIXED_SIZES export FT_FACE_FLAG_FIXED_WIDTH export FT_FACE_FLAG_SFNT export FT_FACE_FLAG_HORIZONTAL export FT_FACE_FLAG_VERTICAL export FT_FACE_FLAG_KERNING export FT_FACE_FLAG_FAST_GLYPHS export FT_FACE_FLAG_MULTIPLE_MASTERS export FT_FACE_FLAG_GLYPH_NAMES export FT_FACE_FLAG_EXTERNAL_STREAM export FT_FACE_FLAG_HINTER export FT_FACE_FLAG_CID_KEYED export FT_FACE_FLAG_TRICKY export FT_FACE_FLAG_COLOR export FT_RENDER_MODE_NORMAL export FT_RENDER_MODE_LIGHT export FT_RENDER_MODE_MONO export FT_RENDER_MODE_LCD export FT_RENDER_MODE_LCD_V export FT_RENDER_MODE_MAX export FT_PIXEL_MODE_NONE export FT_PIXEL_MODE_MONO export FT_PIXEL_MODE_GRAY export FT_PIXEL_MODE_GRAY2 export FT_PIXEL_MODE_GRAY4 export FT_PIXEL_MODE_LCD export FT_PIXEL_MODE_LCD_V export FT_PIXEL_MODE_BGRA export FT_PIXEL_MODE_MAX
proofpile-julia0005-42464
{ "provenance": "014.jsonl.gz:242465" }
module GatedLinearNetworks export GaussianGGLN, train!, predict using Flux using Statistics """ Normalize input using a online estimate of mean and variance using Welford's algorithm. """ struct NormalizationLayer{VF <: AbstractVector{<:Real}, VI <: AbstractVector{Int}} count::VI # [1] mean::VF # [data_dim] m2::VF # [data_dim] end function NormalizationLayer(n::Int) return NormalizationLayer( Int[0], zeros(Float32, n), zeros(Float32, n)) end """ Apply standardization to the input, and update parameters if `training` is true. This is basically batch normalization. x is [data_dim, batch_dim] """ function forward(layer::NormalizationLayer, x::AbstractMatrix, training::Bool) if training for j in 1:size(x, 2) layer.count .+= 1 xj = x[:,j] delta = xj - layer.mean layer.mean .+= delta ./ layer.count delta2 = xj - layer.mean layer.m2 .+= delta .* delta2 end end @assert layer.count[1] > 0 sd = sqrt.(layer.m2 ./ layer.count) return (x .- layer.mean) ./ sd end function inverse(layer::NormalizationLayer, z::AbstractArray) sd = sqrt.(layer.m2 ./ layer.count) return (z .* sd) .+ layer.mean end function inverse(layer::NormalizationLayer, μ::AbstractArray, σ2::AbstractArray) sd = sqrt.(layer.m2 ./ layer.count) μ_inv = (μ .* sd) .+ layer.mean σ2_inv = σ2 .* sd.^2 return μ_inv, σ2_inv end abstract type GaussianWeakLearner end """ Bayesian gaussian linear regression with known precision. Used as a weak learner input to the GGLN. """ struct BasicGaussianLinearRegression{ VF <: AbstractVector{<:Real}, MF <: AbstractMatrix{<:Real}, VI <: AbstractVector{Int}} <: GaussianWeakLearner # accumulated sufficient statistics xy::MF # [predictor_dim, prediction_dim] xx::VF # [predictor_dim] x::VF # [prediction_dim] y::VF # [prediction_dim] count::VI # [1] # known prior precision τ0::VF # [prediction_dim] τ::VF # [prediction_dim] end """ Construct a bayesian linear regression. * `predictor_dim`: dimensionality of predictors * `prediction_dim`: dimensionality of predictions """ function BasicGaussianLinearRegression(predictor_dim::Int, prediction_dim::Int) return BasicGaussianLinearRegression( zeros(Float32, (predictor_dim, prediction_dim)), zeros(Float32, predictor_dim), zeros(Float32, predictor_dim), zeros(Float32, prediction_dim), zeros(Int, 1), Float32[1f0], Float32[1f0]) end """ Forward pass for the linear regression. Train when `y` is given, otherwise only output posterior predictive parameters. """ function forward( layer::BasicGaussianLinearRegression, x::AbstractMatrix, y::Union{Nothing, AbstractMatrix}) predictor_dim = size(layer.xy, 1) prediction_dim = size(layer.xy, 2) batch_dim = size(x, 2) @assert size(x, 1) == predictor_dim @assert y === nothing || size(y, 1) == prediction_dim @assert y === nothing || size(y, 2) == batch_dim # [predictor_dim] c1 = (layer.τ0 .+ layer.τ .* layer.count) .* (layer.τ0 .+ layer.τ .* layer.xx) .- (layer.τ .* layer.x).^2 # [predictor_dim] c2 = layer.τ ./ c1 # [predictor_dim, prediction_dim] uw = (layer.τ0 .+ layer.τ .* layer.count) .* layer.xy vw = layer.τ .* reshape(layer.x, (predictor_dim, 1)) .* reshape(layer.y, (1, prediction_dim)) # [predictor_dim, prediction_dim] μ_w = c2 .* (uw .- vw) # [predictor_dim, prediction_dim] ub = (layer.τ0 .+ layer.τ .* reshape(layer.xx, (predictor_dim, 1))) .* reshape(layer.y, (1, prediction_dim)) vb = layer.τ .* layer.x .* layer.xy # [predictor_dim, predction_dim] μ_b = c2 .* (ub .- vb) # [predictors_dim, batch_dim] σ2 = inv.(layer.τ) .+ inv.(c1) .* ( (layer.τ0 .+ layer.τ .* layer.count) .* x.^2 .- 2f0 .* layer.τ .* x .* layer.x .+ layer.τ0 .+ layer.τ .* layer.xx) # repeat this across the prediction_dim, since this is an isotropic gaussian # [predictior_dim, prediction_dim, batch_dim] σ2 = repeat(reshape(σ2, (predictor_dim, 1, batch_dim)), 1, prediction_dim, 1) # [predictors_dim, predictions_dim, batch_dim] μ = reshape(x, (predictor_dim, 1, batch_dim)) .* reshape(μ_w, (predictor_dim, prediction_dim, 1)) .+ reshape(μ_b, (predictor_dim, prediction_dim, 1)) if y !== nothing layer.xx .+= dropdims(sum(x.*x, dims=2), dims=2) layer.xy .+= dropdims(sum(reshape(x, (predictor_dim, 1, batch_dim)) .* reshape(y, (1, prediction_dim, batch_dim)), dims=3), dims=3) layer.x .+= dropdims(sum(x, dims=2), dims=2) layer.y .+= dropdims(sum(y, dims=2), dims=2) layer.count .+= size(x, 2) end # [predictor_dim, predicton_dim, batch_dim] return μ, σ2 end """ Basically MinHash. """ struct LocalitySensitiveHash{ MF <: AbstractMatrix{<:Real}, VF <: AbstractVector{<:Real}, VI <: AbstractVector{Int32}} output_dim::Int context_dim::Int # context function parameters hyperplanes::MF hyperplanes_bias::VF # used to compute weight indexes bit_offsets::VI k_offsets::VI end """ Construct a locality sensitive hash function. * `output_dim`: number of outputs (i.e. number of units in this layer) * `context_dim`: number of context functions (inducing 2^context_dim weight vectors) * `predictor_dim`: dimensionality of predictors """ function LocalitySensitiveHash(output_dim::Int, context_dim::Int, predictor_dim::Int) hyperplanes = randn(Float32, (output_dim*context_dim, predictor_dim)) hyperplanes_bias = randn(Float32, (output_dim*context_dim)) bit_offsets = collect(Int32, 0:context_dim-1) k_offsets = collect(Int32, 1:output_dim) return LocalitySensitiveHash( output_dim, context_dim, hyperplanes, hyperplanes_bias, bit_offsets, k_offsets) end """ Apply the context functions for this layer, mapping (standardized) input vectors to indexes in [1, 2^context_dim]. """ function (lsh::LocalitySensitiveHash)(X::AbstractMatrix) bits = (lsh.hyperplanes * X) .> lsh.hyperplanes_bias batch_dim = size(X, 2) bits_reshape = reshape(bits, (lsh.context_dim, lsh.output_dim, batch_dim)) cs = dropdims(sum(bits_reshape .<< lsh.bit_offsets, dims=1), dims=1) .+ lsh.k_offsets return cs end """ A single GGLN layer with arbitrary number of units. """ struct GGLNLayer{ MF <: AbstractMatrix{<:Real}, VF <: AbstractVector{<:Real}, VI <: AbstractVector{Int32}} input_dim::Int output_dim::Int context_dim::Int predictor_dim::Int prediction_dim::Int learning_rate::Float64 lsh::LocalitySensitiveHash{MF, VF, VI} weights::MF end """ Construct a single GGLN layer. * `input_dim`: number of inputs (i.e. number of units in the prev layer) * `output_dim`: number of outputs (i.e. number of units in this layer) * `context_dim`: number of context functions (inducing 2^context_dim weight vectors) * `predictor_dim`: dimensionality of predictors * `prediction_dim`: dimensionality of predictions * `learning_rate`: controls step size """ function GGLNLayer( input_dim::Int, output_dim::Int, context_dim::Int, predictor_dim::Int, prediction_dim::Int, learning_rate::Float64=1e-2) lsh = LocalitySensitiveHash(output_dim, context_dim, predictor_dim) weights = fill(log(1f0/input_dim), (input_dim, output_dim*(2^context_dim))) return GGLNLayer( input_dim, output_dim, context_dim, predictor_dim, prediction_dim, learning_rate, lsh, weights) end """ Forward pass for a single GGLN layer, training if `y` is given, predicting if not. input_μ: [input_dim, prediction_dim, batch_dim] input_σ2: [input_dim, prediction_dim, batch_dim] z: [predictor_dim, batch_dim] y: [prediction_dim, batch_dim] """ function forward( layer::GGLNLayer, input_μ::AbstractArray, input_σ2::AbstractArray, z::AbstractMatrix, y::Union{Nothing, AbstractMatrix}) # input_μ, input_σ should be [input_dim, batch_dim] batch_dim = size(input_μ, 3) # [output_dim, batch_dim] cs = layer.lsh(z) function predict(weights) # [input_dim, output_dim, 1, batch_dim] weights_cs = weights[:,cs] penalty = 1f-5 * sum(weights_cs.^2) weights_ = exp.(reshape( weights_cs, (layer.input_dim, layer.output_dim, 1, batch_dim))) # [input_dim, 1, prediction_dim, batch_dim] input_μ_ = reshape(input_μ, (layer.input_dim, 1, layer.prediction_dim, batch_dim)) input_σ2_ = reshape(input_σ2, (layer.input_dim, 1, layer.prediction_dim, batch_dim)) # [output_dim, prediction_dim, batch_dim] σ2 = inv.(dropdims(sum(weights_ ./ input_σ2_, dims=1), dims=1)) # [output_dim, prediction_dim, batch_dim] μ = σ2 .* dropdims(sum(weights_ .* input_μ_ ./ input_σ2_, dims=1), dims=1) return μ, σ2, penalty end if y !== nothing function loss(weights) # [output_dim, prediction_dim, batch_dim] μ, σ2, penalty = predict(weights) σ = sqrt.(σ2) y_ = reshape(y, (1, layer.prediction_dim, batch_dim)) # negative normal log-pdf neg_ll = -sum(.- log.(σ) .- 0.5 * log.(2*π) .- 0.5 .* ((y_ .- μ) ./ σ).^2) return neg_ll + penalty # return neg_ll end dloss_dweights = gradient(loss, layer.weights)[1] layer.weights .-= layer.learning_rate .* dloss_dweights clamp!(layer.weights, -10f0, 10f0) end return predict(layer.weights) end """ Complete GGLN model. """ struct GaussianGGLN{AF <: AbstractArray{<:Real,3}} x_norm::NormalizationLayer y_norm::NormalizationLayer weak_learner::BasicGaussianLinearRegression layers::Vector{GGLNLayer} # [bias_dim, prediction_dim, 1] μ_bias::AF σ2_bias::AF end """ Construct an untrained gaussian gated linear network. * `predictor_dim`: dimensionality of predictors (x) * `prediction_dim`: dimensionality of predictions (y) * `num_layers`: number of layers in the model * `layer_width`: width of each layer in the model * `context_dim`: number of context functions (inducing 2^context_dim weight vectors) * `bias`: values for `bias` units. """ function GaussianGGLN( predictor_dim::Int, prediction_dim::Int, num_layers::Int, layer_width::Int, context_dim::Int, bias::Float32=5.0f0) bias_dim = 2*prediction_dim layers = GGLNLayer[] if num_layers > 0 push!( layers, GGLNLayer( predictor_dim + bias_dim, layer_width, context_dim, predictor_dim, prediction_dim)) end for i in 1:num_layers-1 push!( layers, GGLNLayer( layer_width + bias_dim, layer_width, context_dim, predictor_dim, prediction_dim)) end # compute the bias arrays μ_bias = Array{Float32}(undef, (bias_dim, prediction_dim, 1)) μ_bias = zeros(Float32, (bias_dim, prediction_dim, 1)) # We want a bias unit for +/- bias for every prediction dimension. for i in 1:prediction_dim μ_bias[i, i, 1] = -bias μ_bias[prediction_dim+i, i, 1] = bias end σ2_bias = ones(Float32, (bias_dim, prediction_dim, 1)) return GaussianGGLN( NormalizationLayer(predictor_dim), NormalizationLayer(prediction_dim), BasicGaussianLinearRegression(predictor_dim, prediction_dim), layers, μ_bias, σ2_bias) end """ Forward pass for the GGLN, training if y is given, predicting otherwise. """ function forward(ggln::GaussianGGLN, x::AbstractMatrix, y::Union{Nothing, AbstractMatrix}) batch_dim = size(x, 2) @assert y === nothing || size(x, 2) == size(y, 2) @assert y === nothing || size(y, 1) == size(ggln.μ_bias, 2) xz = forward(ggln.x_norm, x, y !== nothing) yz = y === nothing ? nothing : forward(ggln.y_norm, y, true) μ, σ2 = forward(ggln.weak_learner, xz, yz) for layer in ggln.layers # concatenate bias inputs μ = cat(repeat(ggln.μ_bias, 1, 1, batch_dim), μ, dims=1) σ2 = cat(repeat(ggln.σ2_bias, 1, 1, batch_dim), σ2, dims=1) # [output_dim, prediction_dim, batch_dim] μ, σ2 = forward(layer, μ, σ2, xz, yz) end return inverse( ggln.y_norm, dropdims(mean(μ, dims=1), dims=1), dropdims(mean(σ2, dims=1), dims=1)) end """ Train the model one step using a the batch of predictors `x` and predictions `y`. `x` should have shape [predictors dimension, batch size] `y` should have shape [predictions dimension, batch size] """ function train!(ggln::GaussianGGLN, x::AbstractMatrix, y::AbstractMatrix) return forward(ggln, x, y) end """ Make predictions using a trained model for predictors `x`. `x` should have shape [predictors dimension, batch size] """ function predict(ggln::GaussianGGLN, x::AbstractMatrix) return forward(ggln, x, nothing) end end # module
proofpile-julia0005-42465
{ "provenance": "014.jsonl.gz:242466" }
using Plots # plotly() @testset "plot with no errors" begin res0 = [get_interval( [3., 2., 2.1], i, f_3p_1im_dep, :LIN_EXTRAPOL; local_alg = :LN_NELDERMEAD, theta_bounds = [(-12., 12.), (-12., 12.), (-12., 12.)], loss_tol = 1e-3, loss_crit = 9., silent = true ) for i in 1:3] update_profile_points!(res0[1]; max_recursions=1) a_grid_1 = LikelihoodProfiler.get_grid(res0[1]) @test length(a_grid_1[2]) > 0 p = plot(res0[1]) @test p isa Plots.Plot end
proofpile-julia0005-42466
{ "provenance": "014.jsonl.gz:242467" }
module Contractions # export export fix_contractions """ fix_contractions: Fix Contractions in a given text params: ------ - text:: AbstractString , given text usage: ------ >>> fix_contractions(mytext) """ function fix_contractions(text::AbstractString) text = replace.(text,"ain't"=>"am not") text = replace.(text,"aren't"=>"are not") text = replace.(text,"can't"=>"cannot") text = replace.(text,"can't've"=>"cannot have") text = replace.(text,"'cause"=>"because") text = replace.(text,"could've"=>"could have") text = replace.(text,"couldn't"=>"could not") text = replace.(text,"couldn't've"=>"could not have") text = replace.(text,"didn't"=>"did not") text = replace.(text,"doesn't"=>"does not") text = replace.(text,"don't"=>"do not") text = replace.(text,"hadn't"=>"had not") text = replace.(text,"hadn't've"=>"had not have") text = replace.(text,"hasn't"=>"has not") text = replace.(text,"haven't"=>"have not") text = replace.(text,"he'd"=>"he would") text = replace.(text,"he'd've"=>"he would have") text = replace.(text,"he'll"=>"he will") text = replace.(text,"he'll've"=>"he will have") text = replace.(text,"he's"=>"he is") text = replace.(text,"how'd"=>"how did") text = replace.(text,"how'd'y"=>"how do you") text = replace.(text,"how'll"=>"how will") text = replace.(text,"how's"=>"how is") text = replace.(text,"I'd"=>"I would") text = replace.(text,"I'd've"=>"I would have") text = replace.(text,"I'll"=>"I will") text = replace.(text,"I'll've"=>"I will have") text = replace.(text,"I'm"=>"I am") text = replace.(text,"I've"=>"I have") text = replace.(text,"isn't"=>"is not") text = replace.(text,"it'd"=>"it had") text = replace.(text,"it'd've"=>"it would have") text = replace.(text,"it'll"=>"it will") text = replace.(text,"it'll've"=>"it will have") text = replace.(text,"it's"=>"it is") text = replace.(text,"let's"=>"let us") text = replace.(text,"ma'am"=>"madam") text = replace.(text,"mayn't"=>"may not") text = replace.(text,"might've"=>"might have") text = replace.(text,"mightn't"=>"might not") text = replace.(text,"mightn't've"=>"might not have") text = replace.(text,"must've"=>"must have") text = replace.(text,"mustn't"=>"must not") text = replace.(text,"mustn't've"=>"must not have") text = replace.(text,"needn't"=>"need not") text = replace.(text,"needn't've"=>"need not have") text = replace.(text,"o'clock"=>"of the clock") text = replace.(text,"oughtn't"=>"ought not") text = replace.(text,"oughtn't've"=>"ought not have") text = replace.(text,"shan't"=>"shall not") text = replace.(text,"sha'n't"=>"shall not") text = replace.(text,"shan't've"=>"shall not have") text = replace.(text,"she'd"=>"she would") text = replace.(text,"she'd've"=>"she would have") text = replace.(text,"she'll"=>"she will") text = replace.(text,"she'll've"=>"she will have") text = replace.(text,"she's"=>"she is") text = replace.(text,"should've"=>"should have") text = replace.(text,"shouldn't"=>"should not") text = replace.(text,"shouldn't've"=>"should not have") text = replace.(text,"so've"=>"so have") text = replace.(text,"so's"=>"so is") text = replace.(text,"that'd"=>"that would") text = replace.(text,"that'd've"=>"that would have") text = replace.(text,"that's"=>"that is") text = replace.(text,"there'd"=>"there had") text = replace.(text,"there'd've"=>"there would have") text = replace.(text,"there's"=>"there is") text = replace.(text,"they'd"=>"they would") text = replace.(text,"they'd've"=>"they would have") text = replace.(text,"they'll"=>"they will") text = replace.(text,"they'll've"=>"they will have") text = replace.(text,"they're"=>"they are") text = replace.(text,"they've"=>"they have") text = replace.(text,"to've"=>"to have") text = replace.(text,"wasn't"=>"was not") text = replace.(text,"we'd"=>"we had") text = replace.(text,"we'd've"=>"we would have") text = replace.(text,"we'll"=>"we will") text = replace.(text,"we'll've"=>"we will have") text = replace.(text,"we're"=>"we are") text = replace.(text,"we've"=>"we have") text = replace.(text,"weren't"=>"were not") text = replace.(text,"what'll"=>"what will") text = replace.(text,"what'll've"=>"what will have") text = replace.(text,"what're"=>"what are") text = replace.(text,"what's"=>"what is") text = replace.(text,"what've"=>"what have") text = replace.(text,"when's"=>"when is") text = replace.(text,"when've"=>"when have") text = replace.(text,"where'd"=>"where did") text = replace.(text,"where's"=>"where is") text = replace.(text,"where've"=>"where have") text = replace.(text,"who'll"=>"who will") text = replace.(text,"who'll've"=>"who will have") text = replace.(text,"who's"=>"who is") text = replace.(text,"who've"=>"who have") text = replace.(text,"why's"=>"why is") text = replace.(text,"why've"=>"why have") text = replace.(text,"will've"=>"will have") text = replace.(text,"won't"=>"will not") text = replace.(text,"won't've"=>"will not have") text = replace.(text,"would've"=>"would have") text = replace.(text,"wouldn't"=>"would not") text = replace.(text,"wouldn't've"=>"would not have") text = replace.(text,"y'all"=>"you all") text = replace.(text,"y'alls"=>"you alls") text = replace.(text,"y'all'd"=>"you all would") text = replace.(text,"y'all'd've"=>"you all would have") text = replace.(text,"y'all're"=>"you all are") text = replace.(text,"y'all've"=>"you all have") text = replace.(text,"you'd"=>"you had") text = replace.(text,"you'd've"=>"you would have") text = replace.(text,"you'll"=>"you you will") text = replace.(text,"you'll've"=>"you you will have") text = replace.(text,"you're"=>"you are") text = replace.(text,"you've"=>"you have") return text end end
proofpile-julia0005-42467
{ "provenance": "014.jsonl.gz:242468" }
using TensorToolbox include("LTR.jl") include("methods/NTD.jl") include("methods/lraSNTD.jl") include("methods/LD/LD.jl") function tucker_to_cprank(tucker_rank) if all(isequal(first(tucker_rank)),tucker_rank) cp = tucker_rank[1] else error("rank $tucker_rank cannot convert to CP rank") end return cp end function calc(X, method, reqrank) if method == "LT1R" @assert tucker_to_cprank(reqrank) == 1 return LT1R(X) elseif method == "LTR" return LTR(X, reqrank) elseif method == "NTD_KL" _, _, Xr = NTD(X, reqrank, cost="KL", init_method=NTD_init, verbose=false) return Xr elseif method == "NTD_LS" _, _, Xr = NTD(X, reqrank, cost="LS", init_method=NTD_init, verbose=false) return Xr elseif method == "lraSNTD" return lraSNTD(X, reqrank) else error("calc method error") end end
proofpile-julia0005-42468
{ "provenance": "014.jsonl.gz:242469" }
#!/usr/local/bin/julia using MultivariatePolynomials using JuMP using PolyJuMP using SumOfSquares using ArgParse function try_import(name::Symbol) try @eval import $name return true catch e return false end end scs = try_import(:SCS) csdp = try_import(:CSDP) isscs(solver) = contains(string(typeof(solver)),"SCSSolver") # Semidefinite solvers sdp_solvers = Any[] # Need 54000 iterations for sosdemo3 to pass on Linux 64 bits # With 55000, sosdemo3 passes for every platform except Windows 64 bits on AppVeyor scs && push!(sdp_solvers, SCS.SCSSolver(eps=1e-6, max_iters=60000, verbose=0)) csdp && push!(sdp_solvers, CSDP.CSDPSolver(printlevel=1, maxiter=60000, axtol=1.0e-8, atytol=1.0e-8)) function main(args) global sdp_solvers s = ArgParseSettings("Example 4 for argparse.jl: " * "more tweaking of the arg fields: " * "dest_name, metvar, range_tested, " * "alternative actions.") @add_arg_table s begin "--opt1" action = :append_const # appends 'constant' to 'dest_name' arg_type = ByteString # the only utility of this is restricting the dest array type constant = "O1" dest_name = "O_stack" # this changes the destination help = "append O1" end s.epilog = """ freeSir.jl """ parsed_args = parse_args(args, s) println("Parsed args:") for (key,val) in parsed_args println(" $key => $(repr(val))") end println("calling the solvers") for solver in sdp_solvers @polyvar x[1:2] μ = 0.2 β = 0.5 γ = 0.6 s = 1. i = 0. R0 = β / ( μ + γ ) # Constructing the vector field dx/dt = f f = [μ - β * (x[1] + s) * (x[2] + i) - μ * (x[1] + s), β * (x[1] + s) * (x[2] + i) - (μ + γ) * (x[2] + i)] #f = [0.06 - 0.01 * (x[1] + 1.) * x[2] - 0.06 * (x[1] + 1.), # 0.01 * (x[1] + 1.) * x[2] - (0.06 + 0.5) * x[2]] #println(f) m = Model(solver = solver) # The Lyapunov function V(x): Z = x.^2 @polyvariable m V Z @polyconstraint m V >= 1e-16 * sum(x.^2) # dV/dx*f <= 0 P = dot(differentiate(V, x), f) @polyconstraint m P <= 0 @polyconstraint m x[1] * ( x[1] + 1) <= 0 @polyconstraint m x[2] * ( x[2] - 1) <= 0 println(x) println("este es el modelo final") print(m) println("valor de la funcion objetivo", getobjectivevalue(m)) status = solve(m); flyapunov = getvalue(V) println("Lyapunov function using $(typeof(solver))") println(flyapunov) println("Derivada Orbital") println(dot(differentiate(flyapunov, x), f)) println(status) println("Basic Reproductive Number") println(R0) #status --> :Optimal #removemonomials(getvalue(V), Z) --> zero(Polynomial{true, Float64}) end end main(ARGS)
proofpile-julia0005-42469
{ "provenance": "014.jsonl.gz:242470" }
using DrWatson @quickactivate("HyperspectraWithNeXL") # Load the necessary libraries using HyperspectraWithNeXL using NeXLSpectrum using Unitful using FileIO, ImageIO # Load the HyperSpectrum from disk lt = 0.72*4.0*18.0*3600.0/(1024*1024) # 18.0 hours on 4 detectors hs = NeXLSpectrum.compress(HyperSpectrum( LinearEnergyScale(0.0,10.0), Dict{Symbol,Any}( :TakeOffAngle => deg2rad(35.0), :ProbeCurrent => 1.0, :LiveTime => lt, :BeamEnergy => 20.0e3, :Name => "Mn Nodule" ), readrplraw(joinpath(datadep"MnNodule","map[15]")), fov = [ 4.096u"mm", 4.096u"mm"], offset= [ 0.0u"mm", 0.0u"mm" ] )) outpath = joinpath(papersdir(),"Figures","Figure 5") mkpath(outpath) cp(joinpath(datadep"MnNodule","Image[0][[1]].png"), joinpath(outpath,"Mn_nodule_BSED.png"), force=true) # Independent normalization (to brightest pixel) outpath = joinpath(papersdir(),"Figures","Figure 6") mkpath(outpath) FileIO.save(File{format"PNG"}(joinpath(outpath,"I[C K-L2].png")), hs[n"Mn K-L3"]) FileIO.save(File{format"PNG"}(joinpath(outpath,"I[Mn K-L3].png")), hs[n"Mn K-L3"]) FileIO.save(File{format"PNG"}(joinpath(outpath,"I[Fe K-L3].png")), hs[n"Fe K-L3"]) FileIO.save(File{format"PNG"}(joinpath(outpath,"I[O K-L3].png")), hs[n"O K-L3"]) # Normalized as a set (normalize to sum of intensities) outpath=plotsdir() mkpath(outpath) cxrs = [n"Mn K-L3", n"O K-L3", n"Fe K-L3" ] imgs = hs[ cxrs ] for (cxr, img) in zip(cxrs, imgs) FileIO.save(File{format"PNG"}(joinpath(outpath,"I_rel[$cxr].png")), img) end # RGB outpath = joinpath(papersdir(),"Figures","Figure 7") mkpath(outpath) img = colorize(hs, cxrs, :All) FileIO.save(File{format"PNG"}(joinpath(outpath,"colorized[Mn,O,Fe,All].png")), img) img = colorize(hs, cxrs, :Each) FileIO.save(File{format"PNG"}(joinpath(outpath,"colorized[Mn,O,Fe,Each].png")), img)
proofpile-julia0005-42470
{ "provenance": "014.jsonl.gz:242471" }
@testset "Levenberg-Marquardt: NIST Dataset (BoxBOD)" begin print_head("Levenberg-Marquardt: NIST Dataset (BoxBOD)") obj = optimizer(nd=2, ny=6, method="lm") fun = BoxBOD() sol = Vector{Float64}(undef, 2) parμ = [10.0, 5.5] βvec = zeros(Float64, 6) βmat = zeros(Float64, 6, 6) print_body("\033[1m\033[34mLikelihood Precision Matrix: Identity\033[0m") @simd for i in eachindex(βvec) @inbounds βvec[i] = 1.0 end @simd for i in eachindex(βvec) @inbounds βmat[i,i] = 1.0 end ans = [213.809409, 0.54723748] print_body(string("Precision Const.: ", optimize!(sol, fun, parμ, 1.0, obj))) @inbounds for i in eachindex(ans) @test sol[i] ≈ ans[i] rtol=1e-7 end print_body(string("Precision Vector: ", optimize!(sol, fun, parμ, βvec, obj))) @inbounds for i in eachindex(ans) @test sol[i] ≈ ans[i] rtol=1e-7 end print_body(string("Precision Matrix: ", optimize!(sol, fun, parμ, βmat, obj))) @inbounds for i in eachindex(ans) @test sol[i] ≈ ans[i] rtol=1e-7 end print_body("\033[1m\033[34mLikelihood Precision Matrix: Custom\033[0m") @simd for i in eachindex(βvec) @inbounds βvec[i] = 1.0 + 0.1 * (i-1) end @simd for i in eachindex(βvec) @inbounds βmat[i,i] = 1.0 + 0.1 * (i-1) end @inbounds ans[1], ans[2] = 216.132114, 0.52157598 print_body(string("Precision Vector: ", optimize!(sol, fun, parμ, βvec, obj))) @inbounds for i in eachindex(ans) @test sol[i] ≈ ans[i] rtol=1e-7 end print_body(string("Precision Matrix: ", optimize!(sol, fun, parμ, βmat, obj))) @inbounds for i in eachindex(ans) @test sol[i] ≈ ans[i] rtol=1e-7 end end
proofpile-julia0005-42471
{ "provenance": "014.jsonl.gz:242472" }
using DataFrames # readtable function # using Requests type Bus nodeID::Int root::Int Pd::Float64 Qd::Float64 Vmax::Float64 Vmin::Float64 B::Float64 R::Float64 X::Float64 children::Vector{Int} ancestor::Vector{Int} genids::Int function Bus(nodeID, root, Pd, Qd, B, R, X, Vmax, Vmin) b = new(nodeID, root, Pd, Qd) b.Vmax = Vmax b.Vmin = Vmin b.R = R b.X = X b.B = B b.children = Int[] b.ancestor = Int[] # b.genids = 0 return b end end ################################################################# type Generator genID::Int busidx::Int Pgmax::Float64 Pgmin::Float64 Qgmax::Float64 Qgmin::Float64 cost::Float64 function Generator( busidx, Pgmax, Pgmin, Qgmax, Qgmin, cost) g = new(busidx) g.busidx = busidx g.cost = cost g.Pgmax = Pgmax g.Pgmin = Pgmin g.Qgmax = Qgmax g.Qgmin = Qgmin return g end end ################################################################## type Line arcID::Int tail::Int # the "to" node head::Int # the "from" node r::Float64 # the resistance value x::Float64 # the reactance value u::Float64 # the capacity of the line function Line(arcID, tail, head, r, x, u) line = new(arcID, tail, head, r, x) line.u = u return line end end ######################################### ## storage data type Storage ID::Int busidx::Int Pkmax::Float64 Ekmax::Float64 Aleph::Float64 Co::Float64 Cp::Float64 Ce::Float64 function Storage(ID, busidx, Pkmax, Ekmax, Aleph, Co, Cp, Ce) s = new(ID) s.ID = ID s.busidx = busidx s.Pkmax = Pkmax s.Ekmax = Ekmax s.Aleph = Aleph s.Co = Co s.Cp = Cp s.Ce = Ce return s end end ######################################### ## station data type Station ID::Int busidx::Int Cf::Float64 function Station(ID, busidx, Cf) st = new(ID) st.ID = ID st.busidx = busidx st.Cf = Cf return st end end ###################################################################################################### function DataImport(filename_Node, filename_Generator, filename_Line, filename_Storage, filename_Station, filename_SMP) ###################################################################################################### # Bus/Node Data # busmat = readtable(filename_Node) busmat = readcsv(filename_Node, header=true)[1] buses = Bus[] busIDmap = Dict() for i in 1:size(busmat,1) nodeID = i busIDmap[busmat[i,1]] = i if i==1 root = busIDmap[busmat[i,1]] else root = 0 end Pd = busmat[i,2] Qd = busmat[i,3] R = busmat[i,6] X = busmat[i,7] Vmax = busmat[i,4] Vmin = busmat[i,5] B = busmat[i,8] b = Bus(nodeID, root, Pd, Qd, B, R, X, Vmax, Vmin) push!(buses, b) end ####################################################################################################### ## generator data generatorlist = Int[] generators = Generator[] # genmat = readtable(filename_Generator) genmat = readcsv(filename_Generator, header=true)[1] for i in 1:size(genmat,1) busidx = genmat[i,1] Pgmax = genmat[i,2] Pgmin = genmat[i,3] Qgmax = genmat[i,4] Qgmin = genmat[i,5] cost = genmat[i,6] g = Generator(busidx, Pgmax, Pgmin, Qgmax, Qgmin, cost) push!(generators, g) # setg(buses[busidx], i) end #for g in 1:length(generators) # generators[g].cost = genmat[g,4] #end ################################################################# ## branch data # branchmat = readtable(filename_Line) branchmat = readcsv(filename_Line, header=true)[1] lines = Line[] for i in 1:size(branchmat,1) fbus = busIDmap[branchmat[i,2]] tbus = busIDmap[branchmat[i,1]] abus = busIDmap[branchmat[i,1]] x = branchmat[i,4] r = branchmat[i,3] u = branchmat[i,6] # flow limit push!(buses[tbus].children, fbus)#children push!(buses[fbus].ancestor, abus)#ancestor l = Line(i, tbus, fbus, r, x, u) push!(lines,l) end ######################################### ## storage data # storagemat = readtable(filename_Storage) storagemat = readcsv(filename_Storage, header=true)[1] storages = Storage[] for i in 1:size(storagemat,1) storageID = i busidx = 1 Pkmax = storagemat[i,2] Ekmax = storagemat[i,3] Aleph = storagemat[i,4] Co = storagemat[i,5] Cp = storagemat[i,6] Ce = storagemat[i,7] temp = Storage(storageID, busidx, Pkmax, Ekmax, Aleph, Co, Cp, Ce) push!(storages,temp) end ######################################### ## charging/discharing station data # stationmat = readtable(filename_Station) stationmat = readcsv(filename_Station, header=true)[1] stations = Station[] for i in 1:size(stationmat,1) stationID = i busidx = stationmat[i,2] Cf = stationmat[i,3] temp = Station(stationID, busidx, Cf) push!(stations,temp) end ######################################### SMP_raw = readcsv(filename_SMP, header=true)[1] SMP = SMP_raw[3:end] return buses, generators,lines, storages, stations, SMP end
proofpile-julia0005-42472
{ "provenance": "014.jsonl.gz:242473" }
# SPDX-License-Identifier: X11 # 2020-12-07 # Day 2, Part 1 const reg = r"^(\d*)-(\d*) ([a-z]): ([a-z]*)" function main() input = readlines() cnt = 0 for x ∈ input validpass(x) && (cnt += 1) end println(cnt) end function validpass(str::AbstractString)::Bool m = match(reg, str) min = parse.(Int, m.captures[1]) max = parse.(Int, m.captures[2]) chr = m.captures[3][1] pass = m.captures[end] cnt = 0 for c ∈ pass c == chr && (cnt += 1) end return cnt >= min && cnt <= max end main()
proofpile-julia0005-42473
{ "provenance": "014.jsonl.gz:242474" }
using Docile, Lexicon, JuliaFEM const api_directory = "api" """ Searches recursively all the modules from packages. As documentation grows, it's a bit troublesome to add all the new modules manually, so this function searches all the modules automatically. Parameters ---------- module_: Module Module where we want to search modules inside append_list: Array{Module, 1} Array, where we append Modules as we find them Returns ------- None. Void function, which manipulates the append_list """ function search_modules!(module_::Module, append_list::Array{Module, 1}) all_names = names(module_, true) for each in all_names inner_module = module_.(each) if (typeof(inner_module) == Module) && !(inner_module in append_list) push!(append_list, inner_module) search_modules!(inner_module, append_list) end end end append_list = Array(Module, 0) search_modules!(JuliaFEM, append_list) const modules = append_list # main_folder = dirname(dirname(@__FILE__)) # this_folder = dirname(@__FILE__) # file_ = "README.md" # run(`cp $main_folder/$file_ $this_folder`) cd(dirname(@__FILE__)) do # Run the doctests *before* we start to generate *any* documentation. # for m in modules # failures = failed(doctest(m)) # if !isempty(failures.results) # println("\nDoctests failed, aborting commit.\n") # display(failures) # exit(1) # Bail when doctests fail. # end # end # Generate and save the contents of docstrings as markdown files. index = Index() for mod in modules Lexicon.update!(index, save(joinpath(api_directory, "$(mod).rst"), mod)) end save(joinpath(api_directory, "index.rst"), index) # Add a reminder not to edit the generated files. # open(joinpath(api_directory, "README.md"), "w") do f # print(f, """ # Files in this directory are generated using the `build.jl` script. Make # all changes to the originating docstrings/files rather than these ones. # """) # end # save(joinpath(api_directory, "index.rst"), index; md_subheader = :category) # info("Adding all documentation changes in $(api_directory) to this commit.") # success(`git add $(api_directory)`) || exit(1) end
proofpile-julia0005-42474
{ "provenance": "014.jsonl.gz:242475" }
# syntax: proto3 using ProtoBuf import ProtoBuf.meta # ValueType describes the semantics and measurement units of a value. mutable struct ValueType <: ProtoType _type::Int64 # Index into string table. unit::Int64 # Index into string table. ValueType(; kwargs...) = (o=new(); fillunset(o); isempty(kwargs) || ProtoBuf._protobuild(o, kwargs); o) end #mutable struct ValueType mutable struct Label <: ProtoType key::Int64 # Index into string table # At most one of the following must be present str::Int64 # Index into string table num::Int64 # Should only be present when num is present. # Specifies the units of num. # Use arbitrary string (for example, "requests") as a custom count unit. # If no unit is specified, consumer may apply heuristic to deduce the unit. # Consumers may also interpret units like "bytes" and "kilobytes" as memory # units and units like "seconds" and "nanoseconds" as time units, # and apply appropriate unit conversions to these. num_unit::Int64 # Index into string table Label(; kwargs...) = (o=new(); fillunset(o); isempty(kwargs) || ProtoBuf._protobuild(o, kwargs); o) end #mutable struct Label # Each Sample records values encountered in some program # context. The program context is typically a stack trace, perhaps # augmented with auxiliary information like the thread-id, some # indicator of a higher level request being handled etc. mutable struct Sample <: ProtoType # The ids recorded here correspond to a Profile.location.id. # The leaf is at location_id[0]. location_id::Base.Vector{UInt64} # The type and unit of each value is defined by the corresponding # entry in Profile.sample_type. All samples must have the same # number of values, the same as the length of Profile.sample_type. # When aggregating multiple samples into a single sample, the # result has a list of values that is the elemntwise sum of the # lists of the originals. value::Base.Vector{Int64} # label includes additional context for this sample. It can include # things like a thread id, allocation size, etc label::Base.Vector{Label} Sample(; kwargs...) = (o=new(); fillunset(o); isempty(kwargs) || ProtoBuf._protobuild(o, kwargs); o) end #mutable struct Sample const __pack_Sample = Symbol[:location_id,:value] meta(t::Type{Sample}) = meta(t, ProtoBuf.DEF_REQ, ProtoBuf.DEF_FNUM, ProtoBuf.DEF_VAL, true, __pack_Sample, ProtoBuf.DEF_WTYPES, ProtoBuf.DEF_ONEOFS, ProtoBuf.DEF_ONEOF_NAMES, ProtoBuf.DEF_FIELD_TYPES) mutable struct Mapping <: ProtoType # Unique nonzero id for the mapping. id::UInt64 # Address at which the binary (or DLL) is loaded into memory. memory_start::UInt64 # The limit of the address range occupied by this mapping. memory_limit::UInt64 # Offset in the binary that corresponds to the first mapped address. file_offset::UInt64 # The object this entry is loaded from. This can be a filename on # disk for the main binary and shared libraries, or virtual # abstractions like "[vdso]". filename::Int64 # Index into string table # A string that uniquely identifies a particular program version # with high probability. E.g., for binaries generated by GNU tools, # it could be the contents of the .note.gnu.build-id field. build_id::Int64 # Index into string table # The following fields indicate the resolution of symbolic info. has_functions::Bool has_filenames::Bool has_line_numbers::Bool has_inline_frames::Bool Mapping(; kwargs...) = (o=new(); fillunset(o); isempty(kwargs) || ProtoBuf._protobuild(o, kwargs); o) end #mutable struct Mapping mutable struct Line <: ProtoType # The id of the corresponding profile.Function for this line. function_id::UInt64 # Line number in source code. line::Int64 Line(; kwargs...) = (o=new(); fillunset(o); isempty(kwargs) || ProtoBuf._protobuild(o, kwargs); o) end #mutable struct Line # Describes function and line table debug information. mutable struct Location <: ProtoType # Unique nonzero id for the location. A profile could use # instruction addresses or any integer sequence as ids. id::UInt64 # The id of the corresponding profile.Mapping for this location. # It can be unset if the mapping is unknown or not applicable for # this profile type. mapping_id::UInt64 # The instruction address for this location, if available. It # should be within [Mapping.memory_start...Mapping.memory_limit] # for the corresponding mapping. A non-leaf address may be in the # middle of a call instruction. It is up to display tools to find # the beginning of the instruction if necessary. address::UInt64 # Multiple line indicates this location has inlined functions, # where the last entry represents the caller into which the # preceding entries were inlined. # # E.g., if memcpy() is inlined into printf: # line[0].function_name == "memcpy" # line[1].function_name == "printf" line::Base.Vector{Line} # Provides an indication that multiple symbols map to this location's # address, for example due to identical code folding by the linker. In that # case the line information above represents one of the multiple # symbols. This field must be recomputed when the symbolization state of the # profile changes. is_folded::Bool Location(; kwargs...) = (o=new(); fillunset(o); isempty(kwargs) || ProtoBuf._protobuild(o, kwargs); o) end #mutable struct Location mutable struct Function <: ProtoType # Unique nonzero id for the function. id::UInt64 # Name of the function, in human-readable form if available. name::Int64 # Index into string table # Name of the function, as identified by the system. # For instance, it can be a C++ mangled name. system_name::Int64 # Index into string table # Source file containing the function. filename::Int64 # Index into string table # Line number in source file. start_line::Int64 Function(; kwargs...) = (o=new(); fillunset(o); isempty(kwargs) || ProtoBuf._protobuild(o, kwargs); o) end #mutable struct Function mutable struct Profile <: ProtoType # A description of the samples associated with each Sample.value. # For a cpu profile this might be: # [["cpu","nanoseconds"]] or [["wall","seconds"]] or [["syscall","count"]] # For a heap profile, this might be: # [["allocations","count"], ["space","bytes"]], # If one of the values represents the number of events represented # by the sample, by convention it should be at index 0 and use # sample_type.unit == "count". sample_type::Base.Vector{ValueType} # The set of samples recorded in this profile. sample::Base.Vector{Sample} # Mapping from address ranges to the image/binary/library mapped # into that address range. mapping[0] will be the main binary. mapping::Base.Vector{Mapping} # Useful program location location::Base.Vector{Location} # Functions referenced by locations _function::Base.Vector{Function} # A common table for strings referenced by various messages. # string_table[0] must always be "". string_table::Base.Vector{AbstractString} # frames with Function.function_name fully matching the following # regexp will be dropped from the samples, along with their successors. drop_frames::Int64 # Index into string table. # frames with Function.function_name fully matching the following # regexp will be kept, even if it matches drop_functions. keep_frames::Int64 # Index into string table. # The following fields are informational, do not affect # interpretation of results. # Time of collection (UTC) represented as nanoseconds past the epoch. time_nanos::Int64 # Duration of the profile, if a duration makes sense. duration_nanos::Int64 # The kind of events between sampled ocurrences. # e.g [ "cpu","cycles" ] or [ "heap","bytes" ] period_type::ValueType # The number of events between sampled occurrences. period::Int64 # Freeform text associated to the profile. comment::Base.Vector{Int64} # Indices into string table. # Index into the string table of the type of the preferred sample # value. If unset, clients should default to the last sample value. default_sample_type::Int64 Profile(; kwargs...) = (o=new(); fillunset(o); isempty(kwargs) || ProtoBuf._protobuild(o, kwargs); o) end #mutable struct Profile const __pack_Profile = Symbol[:comment] meta(t::Type{Profile}) = meta(t, ProtoBuf.DEF_REQ, ProtoBuf.DEF_FNUM, ProtoBuf.DEF_VAL, true, __pack_Profile, ProtoBuf.DEF_WTYPES, ProtoBuf.DEF_ONEOFS, ProtoBuf.DEF_ONEOF_NAMES, ProtoBuf.DEF_FIELD_TYPES) export Profile, ValueType, Sample, Label, Mapping, Location, Line, Function
proofpile-julia0005-42475
{ "provenance": "014.jsonl.gz:242476" }
using JLD2, DataFrames, Serialization, LinearAlgebra, Distributions import GEAS:breeding, sim_QTL, summarize, create_storage function gpar(nqtl) Dict( :nSire=> 100, :nDam => 200, # male:female = 1:2 :nSib => 40, :nC7e => 30, # number of sib to be challenged :nG8n => 11, # number of generations :nQTL => [nqtl, nqtl], :h² => [.5, .5], :p8e => .5, # percentage of death after challenge :e19e => 1., # edit_successsful_rate :w4t => 1, # weight on the binary trait EBV :nK3n => 10, # number of known QTL on binary trait :dd => 0.01, # A small value to be added to diagonals :edit => false, :fix => false ) end function t_2021_09_12(nrpt = 10) BLAS.set_num_threads(12) nqtl = [100, 500] isdir("dat/tmp") || mkpath("dat/tmp") @load "dat/run/base.jld2" base qdist = [Normal(), Laplace()] rst = DataFrame() ng8n = 11 for nq in nqtl @info "With n_QTL = $nq" dpr = gpar(nq) # parameter dictionary for qd in qdist @info "QTL distribution $(string(qd))" for rpt in 1:nrpt @info "Repeat $rpt of $nrpt" @info "Preparing common base + generation 1" dpr[:fix], dpr[:edit] = false, false par = (; dpr...) qtl = sim_QTL(base, par.nQTL..., d=qd) snp, ped = create_storage(base, par, qtl) serialize("dat/tmp/snp.ser", snp) serialize("dat/tmp/ped.ser", ped) @info "Selection with SNP-BLUP" par = (; dpr...) breeding(ped, snp, base, qtl, par) df = summarize(ped.prd, snp.prd, qtl[2]) df.repeat = repeat([rpt], ng8n) df.dist = repeat([string(qd)[1:3]], ng8n) df.nq = repeat([nq], ng8n) df.method = repeat(["SBLP"], ng8n) append!(rst, df) @info "Selection with emphasis on top $(par.nK3n) QTL" dpr[:fix], dpr[:edit] = true, false par = (; dpr...) snp = deserialize("dat/tmp/snp.ser") ped = deserialize("dat/tmp/ped.ser") breeding(ped, snp, base, qtl, par) df = summarize(ped.prd, snp.prd, qtl[2]) df.repeat = repeat([rpt], ng8n) df.dist = repeat([string(qd)[1:3]], ng8n) df.nq = repeat([nq], ng8n) df.method = repeat(["Fix"], ng8n) append!(rst, df) dpr[:fix], dpr[:edit] = false, true par = (; dpr...) snp = deserialize("dat/tmp/snp.ser") ped = deserialize("dat/tmp/ped.ser") breeding(ped, snp, base, qtl, par) df = summarize(ped.prd, snp.prd, qtl[2]) df.repeat = repeat([rpt], ng8n) df.dist = repeat([string(qd)[1:3]], ng8n) df.nq = repeat([nq], ng8n) df.method = repeat(["Edit"], ng8n) append!(rst, df) serialize("dat/rst/3w-cmp.ser", rst) end end end end function shortcut_2021_09_12() BLAS.set_num_threads(12) dpr = gpar(100) par = (; dpr...) @load "dat/run/base.jld2" base qtl = sim_QTL(base, par.nQTL...) snp, ped = create_storage(base, par, qtl) breeding(ped, snp, base, qtl, par) serialize("dat/tmp/sample.ser", Dict(:snp=>snp, :ped=>ped, :qtl=>qtl)) end
proofpile-julia0005-42476
{ "provenance": "014.jsonl.gz:242477" }
""" T Macrina 160310 Change to directory with the following files: * segmentation.h5 * classification.csv * class_description.csv Run `julia semantic.jl` """ using HDF5 """ `CREATE_SEMANTIC_MASK` - create indexed image for semantic class of every voxel Args: * indexed_matrix: matrix indexed with segment IDs * segment_class: dictionary, keys are segment IDs, values are the class * uncertain_id: class index for a segment ID that was not classified Returns: * semantic_mask: matrix indexed with class IDs """ function create_semantic_mask(indexed_matrix, segment_class, uncertain_id=0) semantic_mask = ones(UInt8, size(indexed_matrix)...) for i in 1:length(indexed_matrix) k = indexed_matrix[i] if haskey(segment_class, k) semantic_mask[i] = UInt8(segment_class[k]) else semantic_mask[i] = uncertain_id end end return semantic_mask end """ `CHECK_SEGMENT_IDS` - Check that all segments have been classified """ function check_segment_ids(indexed_matrix, segment_class) segments_marked = Set(unique(indexed_matrix)) segments_classified = Set(keys(segment_class)) println("Marked but not classified: ", length(setdiff(segments_marked, segments_classified))) println("Classified but not marked: ", length(setdiff(segments_classified, segments_marked))) return assert(Set(segment_ids) == Set(keys(segment_class))) end """ `WRITE_SEMANTIC_MASK` - create indexed image for semantic class of every voxel Args: * dir: path to the folder containing the following files ** segmentation.h5: the segment indexed volume with attribute "main" ** classification.csv: 2 column table - segment id, class id ** class_description.csv: 2 column table - class id, class description Returns: Writes out H5 file, semantic_mask - class id indexed image * "main": matrix indexed with class ids & * "class_id": table of class ids * "class_description": table of class descriptions (match class ids) """ function write_semantic_mask(dir) segmentation_fn = joinpath(dir, "segmentation.h5") classification_fn = joinpath(dir, "classification.csv") class_description_fn = joinpath(dir, "class_description.csv") semantic_mask_fn = joinpath(dir, "semantic_mask.h5") indexed_matrix = h5read(segmentation_fn, "main") segment_class = convert_table_to_dict(readdlm(classification_fn, Int)) semantic_mask = create_semantic_mask(indexed_matrix, segment_class) classes = readdlm(class_description_fn) class_id = map(UInt8, classes[:,1]) class_description = map(String, classes[:,2]) f = h5open(semantic_mask_fn, "w") f["main"] = semantic_mask f["class_id"] = class_id f["class_description"] = class_description close(f) end function convert_table_to_dict(table) d = Dict() for i in 1:size(table,1) d[table[i,1]] = table[i,2] end return d end if !isinteractive() write_semantic_mask(pwd()) end
proofpile-julia0005-42477
{ "provenance": "014.jsonl.gz:242478" }
using DataFrames using CSV using FileIO using Statistics include("experiments/experimentalutils.jl") resultsFolder = mainfolder * "experiments/twostagesvae/" files = readdir(resultsFolder) results = [] for f in files if isfile(resultsFolder * f) push!(results, CSV.read(resultsFolder * f)) end end results = vcat(results...) aggres = [] for d in unique(results[:dataset]) ddf = results[results[:dataset] .== d, :] mean_auc_pxv = mean(ddf[:auc_pxv]) mean_auc_pz = mean(ddf[:auc_pz]) push!(aggres, DataFrame(dataset = d, auc_pxv = mean_auc_pxv, auc_pz = mean_auc_pz)) end aggres = vcat(aggres...)
proofpile-julia0005-42478
{ "provenance": "014.jsonl.gz:242479" }
module DataFittingBasics import DataFitting: AbstractDomain, Domain_1D, Domain_2D, Parameter, AbstractComponent, AbstractComponentData, cdata, evaluate! include("OffsetSlope.jl") include("Polynomial.jl") include("Gaussian.jl") include("Lorentzian.jl") end
proofpile-julia0005-42479
{ "provenance": "014.jsonl.gz:242480" }
#= Visual illustration of the law of large numbers. @author : Spencer Lyon <[email protected]> Victoria Gregory <[email protected]> References ---------- Based off the original python file illustrates_lln.py =# using Plots pyplot() using Distributions using LaTeXStrings n = 100 srand(42) # reproducible results # == Arbitrary collection of distributions == # distributions = Dict("student's t with 10 degrees of freedom" => TDist(10), "beta(2, 2)" => Beta(2.0, 2.0), "lognormal LN(0, 1/2)" => LogNormal(0.5), "gamma(5, 1/2)" => Gamma(5.0, 2.0), "poisson(4)" => Poisson(4), "exponential with lambda = 1" => Exponential(1)) num_plots = 3 dist_data = zeros(num_plots, n) sample_means = [] dist_means = [] titles = [] for i = 1:num_plots dist_names = collect(keys(distributions)) # == Choose a randomly selected distribution == # name = dist_names[rand(1:length(dist_names))] dist = pop!(distributions, name) # == Generate n draws from the distribution == # data = rand(dist, n) # == Compute sample mean at each n == # sample_mean = Array(Float64, n) for j=1:n sample_mean[j] = mean(data[1:j]) end m = mean(dist) dist_data[i, :] = data' push!(sample_means, sample_mean) push!(dist_means, m*ones(n)) push!(titles, name) end # == Plot == # N = repmat(reshape(repmat(linspace(1, n, n), 1, num_plots)', 1, n*num_plots), 2, 1) heights = [zeros(1,n*num_plots); reshape(dist_data, 1, n*num_plots)] plot(N, heights, layout=(3, 1), label="", color=:grey, alpha=0.5) plot!(1:n, dist_data', layout=(3, 1), color=:grey, markershape=:circle, alpha=0.5, label="", linewidth=0) plot!(1:n, sample_means, linewidth=3, alpha=0.6, color=:green, legend=:topleft, layout=(3, 1), label=[LaTeXString("\$\\bar{X}_n\$") "" ""]) plot!(1:n, dist_means, color=:black, linewidth=1.5, layout=(3, 1), linestyle=:dash, grid=false, label=[LaTeXString("\$\\mu\$") "" ""]) plot!(title=titles')
proofpile-julia0005-42480
{ "provenance": "014.jsonl.gz:242481" }
mutable struct DynamicBuffer{O,A} <: AbstractBuffer observations::Vector{O} actions::Vector{A} rewards::Vector{Float64} terminals::Vector{Bool} episodes::Int DynamicBuffer{O,A}() where {O,A} = new(Vector{O}(), A[], Float64[], Bool[], 0) end DynamicBinaryBuffer{A} = DynamicBuffer{Vector{Bool},A} function add!(buffer::DynamicBuffer{O,A}, observation::O) where {O,A} (length(buffer.observations) != length(buffer.actions)) && !buffer.terminals[end] && error( "Incomplete transition" ) push!(buffer.observations, observation) push!(buffer.terminals, false) nothing end function add!(buffer::DynamicBuffer{O,A}, action::A, reward::Float64, next_obs::O, terminal::Bool) where {O,A} length(buffer.observations) == length(buffer.actions) && error( "Incomplete transition" ) push!(buffer.actions, action) push!(buffer.rewards, reward) push!(buffer.observations, next_obs) push!(buffer.terminals, terminal) terminal && (buffer.episodes += 1) nothing end function reset!(buffer::DynamicBuffer) empty!(buffer.observations) empty!(buffer.actions) empty!(buffer.rewards) empty!(buffer.terminals) buffer.episodes = 0 nothing end function Base.iterate(buffer::DynamicBuffer, state=1) state > length(buffer.actions) && return nothing return ((buffer.observations[state], buffer.actions[state], buffer.rewards[state], buffer.observations[state + 1], buffer.terminals[state + 1]), state + 1) end function Base.iterate(rbuffer::Base.Iterators.Reverse{DynamicBuffer{O,A}}, state=length(rbuffer.itr.actions)) where {O,A} state < 1 && return nothing return ((rbuffer.itr.observations[state], rbuffer.itr.actions[state], rbuffer.itr.rewards[state], rbuffer.itr.observations[state + 1], rbuffer.itr.terminals[state + 1]), state - 1) end Base.length(buffer::DynamicBuffer) = length(buffer.actions) Base.eltype(buffer::DynamicBuffer{O,A}) where {O,A} = Tuple{O,A,Float64,O,Bool}
proofpile-julia0005-42481
{ "provenance": "014.jsonl.gz:242482" }
# # This function fits Kernel Density and evaluates density at v (Needs KernelDensity.jl) # function useKDE2fit(x::AbstractArray{Float64,3},v::AbstractMatrix) # q,w,e=size(x) # y = similar(x,q,w) # for a=1:q, s=1:w # z = kde( x[a,s,:] ) # y[a,s] = pdf(z, v[a,s]) # end # return y # end # This function fits Normal pdf and evaluates density at v (Needs Distributions.jl) function useN2fit(x::AbstractArray{Float64,3}, v::AbstractMatrix) q, w, e = size(x) y = similar(x, q, w) for a in 1:q, s in 1:w z = fit(Normal, x[a,s,:]) y[a,s] = pdf.(z, v[a,s]) end return y end # fitting the multivariate version function useMvN2fit(x::AbstractArray{Float64,3}, v::AbstractMatrix) # w is no of variables # q is no of forecast horizon # e are number of draws q, w, e = size(x) y = similar(x, q) for a = 1:q z = fit(MvNormal, x[a,:,:]) y[a] = pdf(z, v[a,:]) end return y end ############################################# ## fitting PIT " PSPIT Calculate Probability Integral Transform time series. [Z, ZHIST] = PSPIT(FORECAST, OBS) obtains the PIT z-series for a given vector of observations in OBS, with associated empirical probability forecasts given in the matrix FORECASTS. Each row of FORECASTS contains an empirical distribution for each element of OBS. [...] = PSPIT(..., ZBINS) specifies the number of histogram bins on the interval [0,1] (default is 10 bins). [...] = PSPIT(..., ZBINS, ZSIGNIF) specifies a significance probability for the null hypothesis test of the z-series bin counts (default 0.95 - 95% significance level). Output parameter Z is the z-series, and ZHIST is a structure with the following elements: 'h.counts' - Count of the number of z-series elements falling within each histogram bin on the interval [0,1]. 'h.centres' - Z-series histogram bin centres. 'confmean' - Expected z-series histogram count, under the null hypothesis of z-series being iid uniform on [0,1]. 'confpos' - Upper confidence interval for the z-series histogram counts, under the null hypothesis of z-series being iid uniform on [0,1]. 'confneg' - Lower confidence interval for the z-series histogram counts, under the null hypothesis of z-series being iid uniform on [0,1]. (cc) Max Little, 2008. This software is licensed under the Attribution-Share Alike 2.5 Generic Creative Commons license: http://creativecommons.org/licenses/by-sa/2.5/ If you use this work, please cite: Little MA et al. (2008), Parsimonious Modeling of UK Daily Rainfall for Density Forecasting, in Geophysical Research Abstracts, EGU General Assembly, Vienna 2008, Volume 10. " function pspit(forecasts::Matrix, obs::Vector; zsignif::Float64 = 0.95, nbins::Int = 10, returnZ::Bool=false) N = length(obs) M, S = size(forecasts) @assert M == N "Length of OBS must match number of rows in FORECASTS" z = similar(obs) freqs = (1. : S) ./ S scale = similar(forecasts, S) for i = 1:N scale .= sort(forecasts[i,:]) @views obsI = obs[i] if obsI < scale[1] z[i] = 0. elseif obsI > scale[end] z[i] = 1. else idx = findlast(scale .<= obsI) if idx > 1 z[i] = freqs[idx - 1] + rand(Uniform()) * (freqs[idx] - freqs[idx - 1]) else z[i] = 0. end end end if returnZ return z end # Obtaining a histogram bins = LinRange(0., 1., nbins+1) h = fit(Histogram, z, bins) # Find the approximate confintv confidence interval for # binomially-distributed PIT histogram bin counts, under # the assumption of iid U(0,1) PIT z-series bprob = 1. / nbins meanheight = convert(Int, floor(N/nbins))::Int binocumul(x) = cdf(Binomial(N,bprob), x) for confwidth = 1:meanheight cip = meanheight + confwidth cin = meanheight - confwidth ci = binocumul(cip) - binocumul(cin - 1.) if ci >= zsignif return (z=z, zhist=h, confmean= meanheight, confpos = cip, confneg = cin) end end @warn "the confidence interval could not be compute due to few observation" return (z=z, zhist=h, confmean= meanheight) end "PSCRPS Calculate Continuous-Ranked Probability Score. CRPS = PSCRPS(FORECAST, OBS) obtains the CRPS for a given vector of observations in OBS, with associated empirical probability forecasts given in the matrix FORECASTS. Each row of FORECASTS contains an empirical distribution for each element of OBS. Output parameter is the CRPS value." function pscrps(forecasts::Matrix, obs::Vector) N = length(obs) M, S = size(forecasts) @assert M == N "Length of OBS must match number of rows in FORECASTS" crps_individual = similar(obs) for i = 1:N crps1 = mean(abs.(forecasts[i, :] .- obs[i])) crps2 = mean(abs.(diff(forecasts[i, randperm(S)]))) crps_individual[i] = crps1 - 0.5 * crps2 end crps = mean(crps_individual) return (crps = crps, crps_individual = crps_individual) end
proofpile-julia0005-42482
{ "provenance": "014.jsonl.gz:242483" }
module FrostHelperBadelineChaserBlock using ..Ahorn, Maple @mapdef Entity "FrostHelper/BadelineChaserBlock" BadelineChaserBlock(x::Integer, y::Integer, width::Integer=Maple.defaultBlockWidth, height::Integer=Maple.defaultBlockWidth, reversed::Bool=false) const placements = Ahorn.PlacementDict( "Badeline Chaser Block (Frost Helper)" => Ahorn.EntityPlacement( BadelineChaserBlock, "rectangle", ) ) Ahorn.minimumSize(entity::BadelineChaserBlock) = 16, 16 Ahorn.resizable(entity::BadelineChaserBlock) = true, true function Ahorn.selection(entity::BadelineChaserBlock) x, y = Ahorn.position(entity) width = Int(get(entity.data, "width", 8)) height = Int(get(entity.data, "height", 8)) return Ahorn.Rectangle(x, y, width, height) end function getTextures(entity::BadelineChaserBlock) return "objects/FrostHelper/badelineChaserBlock/solid", "objects/FrostHelper/badelineChaserBlock/emblemsolid" end function renderSwapBlock(ctx::Ahorn.Cairo.CairoContext, x::Number, y::Number, width::Number, height::Number, midResource::String, frame::String) midSprite = Ahorn.getSprite(midResource, "Gameplay") tilesWidth = div(width, 8) tilesHeight = div(height, 8) for i in 2:tilesWidth - 1 Ahorn.drawImage(ctx, frame, x + (i - 1) * 8, y, 8, 0, 8, 8) Ahorn.drawImage(ctx, frame, x + (i - 1) * 8, y + height - 8, 8, 16, 8, 8) end for i in 2:tilesHeight - 1 Ahorn.drawImage(ctx, frame, x, y + (i - 1) * 8, 0, 8, 8, 8) Ahorn.drawImage(ctx, frame, x + width - 8, y + (i - 1) * 8, 16, 8, 8, 8) end for i in 2:tilesWidth - 1, j in 2:tilesHeight - 1 Ahorn.drawImage(ctx, frame, x + (i - 1) * 8, y + (j - 1) * 8, 8, 8, 8, 8) end Ahorn.drawImage(ctx, frame, x, y, 0, 0, 8, 8) Ahorn.drawImage(ctx, frame, x + width - 8, y, 16, 0, 8, 8) Ahorn.drawImage(ctx, frame, x, y + height - 8, 0, 16, 8, 8) Ahorn.drawImage(ctx, frame, x + width - 8, y + height - 8, 16, 16, 8, 8) Ahorn.drawImage(ctx, midSprite, x + div(width - midSprite.width, 2), y + div(height - midSprite.height, 2)) end function Ahorn.renderSelectedAbs(ctx::Ahorn.Cairo.CairoContext, entity::BadelineChaserBlock, room::Maple.Room) startX, startY = Int(entity.data["x"]), Int(entity.data["y"]) width = Int(get(entity.data, "width", 32)) height = Int(get(entity.data, "height", 32)) frame, mid = getTextures(entity) renderSwapBlock(ctx, startX, startY, width, height, mid, frame) end function Ahorn.renderAbs(ctx::Ahorn.Cairo.CairoContext, entity::BadelineChaserBlock, room::Maple.Room) startX, startY = Int(entity.data["x"]), Int(entity.data["y"]) width = Int(get(entity.data, "width", 32)) height = Int(get(entity.data, "height", 32)) frame, mid = getTextures(entity) renderSwapBlock(ctx, startX, startY, width, height, mid, frame) end end
proofpile-julia0005-42483
{ "provenance": "014.jsonl.gz:242484" }
################################################################################ # Visuals ################################################################################ function visualize(env::Environment, traj::Vector{Vector{T}}) where T @assert size(traj[1]) == size(env.state) storage = generate_storage(env.mechanism, [env.representation == :minimal ? minimal_to_maximal(env.mechanism, x) : x for x in traj]) visualize(env.mechanism, storage, vis=env.vis) end ################################################################################ # Miscellaneous ################################################################################ type2symbol(H) = Symbol(lowercase(String(H.name.name)))
proofpile-julia0005-42484
{ "provenance": "014.jsonl.gz:242485" }
module TestWater using Test using LinearAlgebra using Canopy.Constants: T_0 using Canopy.Water rho_w_validat = hcat( [0., 4., 5., 10., 15., 20., 25., 30.] .+ T_0, [999.8395, 999.9720, 999.96, 999.7026, 999.1026, 998.2071, 997.0479, 995.6502]) pK_w_validat = hcat( collect(0:25:100) .+ T_0, [14.95, 13.99, 13.26, 12.70, 12.25]) @time @testset "Canopy.Water" begin @test norm(water_density.(rho_w_validat[:, 1]) - rho_w_validat[:, 2]) / norm(rho_w_validat[:, 2]) < 1e-4 @test norm(water_dissoc.(pK_w_validat[:, 1]) - pK_w_validat[:, 2]) / norm(pK_w_validat[:, 2]) < 1e-3 end end # module
proofpile-julia0005-42485
{ "provenance": "014.jsonl.gz:242486" }
using LinearAlgebra: eigen, cholesky, diag, diagm, UpperTriangular, LowerTriangular using Statistics: mean """ Functions for mvrnorm, covriance to correlation conversion (cov2cor) and vice versa cor2cov. """ function generateRandomMatrix(p::Int64, n::Int64) x = rand(n, p) return x' * x end """ Function to convert covariance to correlation matrix """ function cov2cor(E::Array{T, 2}) where {T <: AbstractFloat} p = size(E)[1] d::Array{T, 1} = diag(E) d .^= -0.5 C = (d * d') .* E C = 0.5.*(UpperTriangular(C) + LowerTriangular(C)') C = C + C' for i in 1:p C[i, i] = T(1) end return C end """ Function to convert correlation to covariance matrix d is the variance vector of the covariance matrix """ function cor2cov(C::Array{T, 2}, d::Array{T, 1}) where {T <: AbstractFloat} p = size(C)[1] d1 = d .^0.5 E = (d1 * d1') .* C E = 0.5.*(UpperTriangular(E) + LowerTriangular(E)') E = E + E' for i in 1:p E[i, i] /= 2 end return E end """ Function that carries samples from a multivariate normal distribution when supplied with the number of samples (n), the mean vector (mu), and the covariance matrix (sigma). Example: mvrnorm(100, zeros(10), cov2cor(generateRandomMatrix(10, 10000))) """ function mvrnorm(n::Int64, mu::Array{T, 1}, sigma::Array{T, 2}) where {T <: AbstractFloat} p = size(sigma)[1] A = cholesky(sigma).L output = zeros(T, (n, p)) for i = 1:n output[i, :] = mu + A * randn(p) end return output end #=======================================================================================================# """ Random Number Generator for Beta (and Uniform) Distribution """ abstract type AbstractSampleDistribution end struct BetaSampleDistribution{T} <: AbstractSampleDistribution alpha::T beta::T function BetaSampleDistribution(alpha::T, beta::T) where {T <: AbstractFloat} return new{T}(alpha, beta) end function BetaSampleDistribution(alpha::T, beta::T) where {T <: Integer} return BetaSampleDistribution(Float64(alpha), Float64(beta)) end end function calcSample(ualpha::T, vbeta::T) where {T <: AbstractFloat} return ualpha/(ualpha + vbeta) end function condition(ualpha::T, vbeta::T) where {T <: AbstractFloat} return (ualpha + vbeta) > T(1) end """ Version 1 of the random sample from beta distribution Reference: C. P. Robert, G. Casella, Monte Carlo Statistical Methods, Example 2.11 p44 """ function sample(distrib::BetaSampleDistribution{T}, shape::Tuple{Vararg{Int64}}) where {T <: AbstractFloat} n = prod(shape) U = rand(T, n); V = rand(T, n) Y::Array{T} = zeros(T, shape) ialpha = 1/distrib.alpha; ibeta = 1/distrib.beta for i in 1:n u::T = U[i]; v::T = V[i] ualpha = u .^ialpha; vbeta = v .^ibeta; while condition(ualpha, vbeta) u = rand(T, 1)[1]; v = rand(T, 1)[1] ualpha = u .^ialpha; vbeta = v .^ibeta; end Y[i] = calcSample(ualpha, vbeta) end return Y end function sample(distrib::BetaSampleDistribution{T}, shape::Int64) where {T <: AbstractFloat} return sample(distrib, (shape,)) end #=======================================================================================================# struct UniformSampleDistribution{T} <: AbstractSampleDistribution min::T max::T function UniformSampleDistribution(min::T, max::T) where {T <: AbstractFloat} @assert(min < max, "Minimum value is not less than maximum value") return new{T}(min, max) end function UniformSampleDistribution(min::T, max::T) where {T <: Integer} return UniformSampleDistribution(Float64(min), Float64(max)) end end function sample(distrib::UniformSampleDistribution{T}, shape::Tuple{Vararg{Int64}}) where {T <: AbstractFloat} rsample::Array{T} = rand(T, shape) return (rsample .* (distrib.max - distrib.min)) .+ distrib.min end function sample(distrib::UniformSampleDistribution{T}, shape::Int64) where {T <: AbstractFloat} return sample(distrib, (shape,)) end function Base.min(x::Array{T}) where {T <: AbstractFloat} n = length(x) @assert(n > 0, "Length of array is zero.") if n == 1 return x[1] end ret::T = x[1] for i in 2:n ret = ret > x[i] ? x[i] : ret end return ret end function Base.max(x::Array{T}) where {T <: AbstractFloat} n = length(x) @assert(n > 0, "Length of array is zero.") if n == 1 return x[1] end ret::T = x[1] for i in 2:n ret = ret < x[i] ? x[i] : ret end return ret end function Base.range(x::Array{T}) where {T <: AbstractFloat} return [min(x), max(x)] end #=======================================================================================================# """ Identity Matrix """ function I(::Type{T}, p::Int64) where {T <: Number} x = zeros(T, (p, p)) for i in 1:p x[i, i] = T(1) end return x end """ Convenience overload """ function I(p::Int64) return I(Float64, p) end """ Types for generating random correlation matrices """ abstract type AbstractRandomCorrelationMatrix end struct BetaGenerator <: AbstractRandomCorrelationMatrix end struct OnionGenerator <: AbstractRandomCorrelationMatrix end struct UniformGenerator <: AbstractRandomCorrelationMatrix end struct VineGenerator <: AbstractRandomCorrelationMatrix end """ Vine method for generating a random correlation matrix Source: https://stats.stackexchange.com/questions/2746/how-to-efficiently-generate-random-positive-semidefinite-correlation-matrices/125017#125017 Check it with to make sure the solutions are correct: Journal of Multivariate Analysis 100 (2009) 1989–2001 Generating random correlation matrices based on vines and extended onion method. Daniel Lewandowski(a)*, Dorota Kurowicka (a), Harry Joe (b). randomCorrelationMatrix(VineGenerator(), 10, 2.0) """ function randomCorrelationMatrix(::VineGenerator, d::Int64, eta::T) where {T <: AbstractFloat} beta = eta + (d - 1)/2 P = zeros(T, (d, d)) S = I(T, d) for k in 1:(d - 1) beta = beta - (1/2) distrib = BetaSampleDistribution(beta, beta) for i in (k + 1):d P[k, i] = sample(distrib, 1)[1] P[k, i] = (P[k, i] - 0.5)*2 p = P[k, i] for l in (k - 1):-1:1 p = p * sqrt((1 - P[l, i]^2)*(1 - P[l, k]^2)) + P[l, i]*P[l, k] end S[k, i] = p S[i, k] = p end end return S end """ Random correlation matrix using the Onion Generator """ function randomCorrelationMatrix(::OnionGenerator, d::Int64, eta::T) where {T <: AbstractFloat} beta::T = eta + (d - 2)/2 distrib = BetaSampleDistribution(beta, beta) u = sample(distrib, 1)[1] r = I(T, 2) r[1, 2] = r[2, 1] = 2*u - 1 for k in 2:(d - 1) beta -= T(1/2) distrib = BetaSampleDistribution(T(k/2), beta) y = sample(distrib, 1)[1] U = rand(T, k) w = sqrt(y) .* U ev = eigen(r) A = ev.vectors * diagm(abs.(ev.values).^(0.5)) * ev.vectors' z = A * w r = [r z; z' T(1)] end return r end """ Random correlation matrix by sampling from Beta Distribution # Example: randomCorrelationMatrix(BetaGenerator(), 10, (1.0, 1.0)) """ function randomCorrelationMatrix(::BetaGenerator, d::Int64, (alpha, beta)::Tuple{T, T}) where {T <: AbstractFloat} distrib = BetaSampleDistribution(alpha, beta) r = sample(distrib, (d, d)) # Change range to (-1, 1) r .= (r .* 2) .+ T(-1) # Symmetry r .= T(0.5) .* (r + r') for i in 1:d r[i, i] = T(1) end ev = eigen(r) r = ev.vectors * diagm(sort(abs.(ev.values))) * ev.vectors' maxR = max(r) r ./= maxR r .= T(0.5) .* (r + r') for i in 1:d r[i, i] = T(1) end return r end """ Random correlation matrix by sampling from Uniform Distribution # Example: randomCorrelationMatrix(Float64, UniformGenerator(), 10) """ function randomCorrelationMatrix(::Type{T}, ::UniformGenerator, d::Int64) where {T <: AbstractFloat} distrib = UniformSampleDistribution(T(-1), T(1)) r = sample(distrib, (d, d)) r .= T(0.5) .* (r + r') for i in 1:d r[i, i] = T(1) end ev = eigen(r) r = ev.vectors * diagm(sort(abs.(ev.values))) * ev.vectors' maxR = max(abs.(r)...) r ./= maxR r .= T(0.5) .* (r + r') for i in 1:d r[i, i] = T(1) end return r end #=======================================================================================================# """ Function to simulate X and eta, p = number of parameters (including intercept), n = number of samples. # Example: using Random: seed! seed!(0) simulateData(Float64, 10, 1000) """ function simulateData(::Type{T}, p::Int64, n::Int64, delta::T = T(0)) where {T <: AbstractFloat} corr = randomCorrelationMatrix(T, UniformGenerator(), p) mu = zeros(T, p) X = mvrnorm(n, mu, corr) #= The intercept =# X[:, 1] .= T(1) b = zeros(T, p) idist = UniformSampleDistribution(T(0), T(0.3)) b[1] = sample(idist, 1)[1] if length(b) > 1 distrib = UniformSampleDistribution(T(-0.1), T(0.1)) b[2:p] = sample(distrib, p - 1) end eta = X*b sd = 0.5*abs(mean(eta)) eta = delta .+ eta .+ sd .* randn(n) return (X = X, eta = eta) end
proofpile-julia0005-42486
{ "provenance": "014.jsonl.gz:242487" }
using Submodular using FactCheck Tol = 1e-3 facts("Algorithms") do context("card-inc-fix") do n = 20 g = rand(n) # the vector used to generate the cardinality-based function g = sort(g, rev=true) g = (g + 0.1)/1.01 for i = 2: n g[i] = g[i] + g[i-1] end S = SetVariable(n) gg = card(g, S) # F(S) = g(|S|) y = rand(n) # the point to be projected on the base polytope of F(S) = g(|S|) euclidean_proj = card_inc_fix(gg, y, "euclidean") # sanity checks: # Is the sorted order of indices in y and the projection the same? # this is a known property of projections under uniform divergences over cardinality-based polytopes @fact sortperm(y) == sortperm(euclidean_proj[1:n]) --> true # Is the constraint x(E) = F(E) = g(n) satisfied upto an error of Tol^3? @fact sum(euclidean_proj) - g[n] --> roughly(0, Tol^3) end context("frank-wolfe with away steps") do n = 4 x = Variable(n) g = norm(x - [3, 2, 5, 1]) S = SetVariable(n) F = card(S) p(z) = -0.5*z^2 + n*z + 0.5 * z perm_func = compose(p, F) P = BasePoly(perm_func) prob = SCOPEminimize(g, x in P) @fact frank_wolfe_away(prob, verbose = false) --> roughly([3, 2, 4, 1], Tol) end end
proofpile-julia0005-42487
{ "provenance": "014.jsonl.gz:242488" }
# JuMP Objectives/constraints # # ========================== # function JuMP.normalized_coefficient( con_ref::ConstraintRef{Model, JuMP._MOICON{F, S}}, decision ) where {S, T, F <: AffineDecisionFunction{T}} con = JuMP.constraint_object(con_ref) return JuMP._affine_coefficient(con.func, decision) end function JuMP.set_objective_coefficient(model::Model, decision_or_known::Union{DecisionRef, KnownRef}, coeff::Real) if model.nlp_data !== nothing && _nlp_objective_function(model) !== nothing error("A nonlinear objective is already set in the model") end obj_fct_type = objective_function_type(model) if obj_fct_type == VariableRef || obj_fct_type == AffExpr || obj_fct_type == QuadExpr current_obj = objective_function(model) set_objective_function(model, add_to_expression!(coeff * decision_or_known, current_obj)) elseif obj_fct_type == typeof(decision_or_known) current_obj = objective_function(model) if index(current_obj) == index(decision_or_known) set_objective_function(model, coeff * decision_or_known) else set_objective_function(model, add_to_expression!(coeff * decision_or_known, current_obj)) end elseif obj_fct_type == DecisionAffExpr{Float64} && decision_or_known isa DecisionRef MOI.modify( backend(model), MOI.ObjectiveFunction{moi_function_type(obj_fct_type)}(), DecisionCoefficientChange(index(decision_or_known), coeff)) elseif obj_fct_type == DecisionAffExpr{Float64} && decision_or_known isa KnownRef MOI.modify( backend(model), MOI.ObjectiveFunction{moi_function_type(obj_fct_type)}(), KnownCoefficientChange(index(decision_or_known), coeff, value(decision_or_known))) else error("Objective function type not supported: $(obj_fct_type)") end return nothing end function JuMP.normalized_rhs(con_ref::ConstraintRef{Model, JuMP._MOICON{F, S}}) where { T, S <: Union{MOI.LessThan{T}, MOI.GreaterThan{T}, MOI.EqualTo{T}}, F <: AffineDecisionFunction{T}} con = constraint_object(con_ref) return MOI.constant(con.set) end function JuMP.set_normalized_coefficient( con_ref::ConstraintRef{Model, JuMP._MOICON{F, S}}, variable::VariableRef, coeff ) where {S, T, F <: AffineDecisionFunction{T}} MOI.modify(backend(owner_model(con_ref)), index(con_ref), MOI.ScalarCoefficientChange(index(variable), convert(T, coeff))) return nothing end function JuMP.set_normalized_coefficient( con_ref::ConstraintRef{Model, JuMP._MOICON{F, S}}, decision::DecisionRef, coeff ) where {S, T, F <: AffineDecisionFunction{T}} MOI.modify(backend(owner_model(con_ref)), index(con_ref), DecisionCoefficientChange(index(decision), convert(T, coeff))) return nothing end function JuMP.set_normalized_coefficient( con_ref::ConstraintRef{Model, JuMP._MOICON{F, S}}, known::KnownRef, coeff ) where {S, T, F <: AffineDecisionFunction{T}} MOI.modify(backend(owner_model(con_ref)), index(con_ref), KnownCoefficientChange(index(known), convert(T, coeff), convert(T, value(known)))) return nothing end # Internal update functions # # ========================== # function update_decisions!(model::JuMP.Model, change::Union{DecisionModification, KnownModification}) update_decision_objective!(model, objective_function_type(model), change) update_decision_variable_constraints!(model, change) update_decision_constraints!(model, change) end function update_decision_objective!(::JuMP.Model, ::DataType, ::Union{DecisionModification, KnownModification}) # Nothing to do if objective does not have decisions return nothing end function update_decision_objective!(model::JuMP.Model, func_type::Type{<:DecisionQuadExpr}, change::DecisionModification) MOI.modify(backend(model), MOI.ObjectiveFunction{JuMP.moi_function_type(func_type)}(), change) return nothing end function update_decision_objective!(model::JuMP.Model, func_type::Type{F}, change::KnownModification) where F <: Union{DecisionAffExpr, DecisionQuadExpr} MOI.modify(backend(model), MOI.ObjectiveFunction{JuMP.moi_function_type(func_type)}(), change) return nothing end function update_decision_variable_constraints!(::JuMP.Model, ::Union{DecisionModification, KnownModification}) # Nothing to do in most cases return nothing end function update_decision_variable_constraints!(model::JuMP.Model, change::DecisionStateChange) for F in [DecisionRef, ] for S in [MOI.EqualTo{Float64}, MOI.LessThan{Float64}, MOI.GreaterThan{Float64}, FreeDecision] for cref in all_constraints(model, F, S) update_decision_constraint!(cref, change) end end end return nothing end function update_decision_variable_constraints!(model::JuMP.Model, ::DecisionsStateChange) for F in [DecisionRef, ] for S in [MOI.EqualTo{Float64}, MOI.LessThan{Float64}, MOI.GreaterThan{Float64}, FreeDecision] for cref in all_constraints(model, F, S) # Fetch the decision dref = JuMP.jump_function(model, MOI.get(model, MOI.ConstraintFunction(), cref)) # Perform specific decision state change change = DecisionStateChange(index(dref), state(dref), 0.0) update_decision_constraint!(cref, change) end end end return nothing end function update_decision_constraints!(model::JuMP.Model, change::Union{DecisionModification, KnownModification}) for F in [DecisionAffExpr{Float64}, DecisionQuadExpr{Float64}] for S in [MOI.EqualTo{Float64}, MOI.LessThan{Float64}, MOI.GreaterThan{Float64}] for cref in all_constraints(model, F, S) update_decision_constraint!(cref, change) end end end for F in [Vector{DecisionAffExpr{Float64}}] for S in [MOI.Zeros, MOI.Nonnegatives, MOI.Nonpositives] for cref in all_constraints(model, F, S) update_decision_constraint!(cref, change) end end end return nothing end function update_decision_constraint!(cref::ConstraintRef, change::Union{DecisionModification, KnownModification}) update_decision_constraint!(backend(owner_model(cref)), cref.index, change) return nothing end function update_decision_constraint!(model::MOI.ModelLike, ci::MOI.ConstraintIndex{SingleDecision, S}, change::DecisionModification) where {T,S} MOI.modify(model, ci, change) return nothing end function update_decision_constraint!(model::MOI.ModelLike, ci::MOI.ConstraintIndex{VectorOfDecisions, S}, change::VectorDecisionModification) where {T,S} MOI.modify(model, ci, change) return nothing end function update_decision_constraint!(model::MOI.ModelLike, ci::MOI.ConstraintIndex{AffineDecisionFunction{T}, S}, change::Union{DecisionCoefficientChange, KnownModification}) where {T,S} MOI.modify(model, ci, change) return nothing end function update_decision_constraint!(model::MOI.ModelLike, ci::MOI.ConstraintIndex{AffineDecisionFunction{T}, S}, change::Union{DecisionStateChange, DecisionsStateChange}) where {T,S} return nothing end function update_decision_constraint!(model::MOI.ModelLike, ci::MOI.ConstraintIndex{VectorAffineDecisionFunction{T}, S}, change::Union{DecisionMultirowChange, KnownModification}) where {T,S} MOI.modify(model, ci, change) return nothing end function update_decision_constraint!(model::MOI.ModelLike, ci::MOI.ConstraintIndex{VectorAffineDecisionFunction{T}, S}, change::Union{DecisionStateChange, DecisionsStateChange}) where {T,S} return nothing end function update_decision_constraint!(model::MOI.ModelLike, ci::MOI.ConstraintIndex{<:QuadraticDecisionFunction{T}, S}, change::Union{DecisionModification, KnownModification}) where {T,S} MOI.modify(model, ci, change) return nothing end
proofpile-julia0005-42488
{ "provenance": "014.jsonl.gz:242489" }
module Distance include("dist.jl") export # Funtion GetDistance, # Types of distances Euclidean, CityBlock, TotalVariation, Chebyshev, Jaccard, BrayCurtis, CosineDist, SpanNormDist end
proofpile-julia0005-42489
{ "provenance": "014.jsonl.gz:242490" }
using FromFile using Random: randperm using LossFunctions @from "Core.jl" import Options, Dataset, Node @from "EquationUtils.jl" import countNodes @from "EvaluateEquation.jl" import evalTreeArray, differentiableEvalTreeArray function Loss(x::AbstractArray{T}, y::AbstractArray{T}, options::Options{A,B,C})::T where {T<:Real,A,B,C<:SupervisedLoss} value(options.loss, y, x, AggMode.Mean()) end function Loss(x::AbstractArray{T}, y::AbstractArray{T}, options::Options{A,B,C})::T where {T<:Real,A,B,C<:Function} sum(options.loss.(x, y))/length(y) end function Loss(x::AbstractArray{T}, y::AbstractArray{T}, w::AbstractArray{T}, options::Options{A,B,C})::T where {T<:Real,A,B,C<:SupervisedLoss} value(options.loss, y, x, AggMode.WeightedMean(w)) end function Loss(x::AbstractArray{T}, y::AbstractArray{T}, w::AbstractArray{T}, options::Options{A,B,C})::T where {T<:Real,A,B,C<:Function} sum(options.loss.(x, y, w))/sum(w) end # Loss function. Only MSE implemented right now. TODO # Also need to put actual loss function in scoreFuncBatch! function EvalLoss(tree::Node, dataset::Dataset{T}, options::Options; allow_diff=false)::T where {T<:Real} if !allow_diff (prediction, completion) = evalTreeArray(tree, dataset.X, options) else (prediction, completion) = differentiableEvalTreeArray(tree, dataset.X, options) end if !completion return T(1000000000) end if dataset.weighted return Loss(prediction, dataset.y, dataset.weights, options) else return Loss(prediction, dataset.y, options) end end # Score an equation function scoreFunc(dataset::Dataset{T}, baseline::T, tree::Node, options::Options; allow_diff=false)::T where {T<:Real} mse = EvalLoss(tree, dataset, options; allow_diff=allow_diff) return mse / baseline + countNodes(tree)*options.parsimony end # Score an equation with a small batch function scoreFuncBatch(dataset::Dataset{T}, baseline::T, tree::Node, options::Options)::T where {T<:Real} batchSize = options.batchSize batch_idx = randperm(dataset.n)[1:options.batchSize] batch_X = dataset.X[:, batch_idx] batch_y = dataset.y[batch_idx] (prediction, completion) = evalTreeArray(tree, batch_X, options) if !completion return T(1000000000) end if !dataset.weighted mse = Loss(prediction, batch_y, options) else batch_w = dataset.weights[batch_idx] mse = Loss(prediction, batch_y, batch_w, options) end return mse / baseline + countNodes(tree) * options.parsimony end
proofpile-julia0005-42490
{ "provenance": "014.jsonl.gz:242491" }
ENV["GKSwstype"]="100" using Test using WaterWaves1D include("./testmodels.jl") # @testset "LoadSave" begin # # dump = convert( ProblemSave, problem1 ) # pload = convert( Problem, dump ) # # save(problem1, "testsave") # pload = loadpb("testsave") # # @test pload.model.kwargs == problem1.model.kwargs # @test pload.solver.Uhat == problem1.solver.Uhat # # end param = ( ϵ = 1/2, μ = 1) paramX= ( N = 2^8, L = 10) paramT= ( T = 5, dt = 0.1) @testset "Parameters" begin @test param.ϵ == 0.5 @test param.μ == 1 @test paramX.N == 256 @test paramX.L == 10 @test paramT.T == 5 @test paramT.dt == 0.1 end
proofpile-julia0005-42491
{ "provenance": "014.jsonl.gz:242492" }
function calcJacobian!(rr::RadauIntegrator{T_object,NX,NC,NR,NSM}, x0::Vector{Float64}, t::Float64) where {T_object,NX,NC,NR,NSM} N_Loop, n_rem = divrem(NX, NC) (n_rem != 0) && (N_Loop += 1) i_now = 1:NC for k = 1:N_Loop i_clamp = i_now[1]:min(i_now[end], NX) seed_indices!(rr.cv.x_dual, x0, i_clamp, rr.cv.seed) rr.de_object.de(rr.cv.xx_dual, rr.cv.x_dual, rr.de_object, t) write_indices!(rr, i_clamp) i_now = i_now .+ NC end return nothing end function seed_indices!(duals::Vector{ForwardDiff.Dual{T,V,N}}, x::Vector{Float64}, index::UnitRange{Int64}, seed::NTuple{N,ForwardDiff.Partials{N,V}}) where {T,V,N} duals .= x i = 1 for k = index duals[k] = ForwardDiff.Dual{T,V,N}(x[k], seed[i]) i += 1 end return nothing end function write_indices!(rr::RadauIntegrator{T_object,NX,NC,NR,NSM}, index::UnitRange{Int64}) where {T_object,NX,NC,NR,NSM} for i = 1:NX xx_dual_i = rr.cv.xx_dual[i] rr.cv.xx_0[i] = ForwardDiff.value(xx_dual_i) the_partials = ForwardDiff.partials(xx_dual_i) k = 1 for j = index # for each x rr.cv.neg_J[i, j] = -the_partials[k] ### the first dual is the partial of the first element wrt all partials ### k += 1 end end return nothing end function zeroFill!(tup_vec_in::NTuple{N,Vector{T}}, table::RadauTable{NS}) where {N,T,NS} for i = 1:NS fill!(tup_vec_in[i], zero(T)) end return nothing end function initialize_X!(rr::RadauIntegrator{T_object,NX,NC,NR,NSM}, table::RadauTable{NS}, x0::Vector{Float64}) where {T_object,NX,NC,NR,NSM,NS} if rr.dense.is_has_X initialize_X_with_interp!(rr, table) else initialize_X_with_X0!(rr, table, x0) end end function initialize_X_with_X0!(rr::RadauIntegrator{T_object,NX,NC,NR,NSM}, table::RadauTable{NS}, x0::Vector{Float64}) where {T_object,NX,NC,NR,NSM,NS} for i = 1:NS LinearAlgebra.BLAS.blascopy!(NX, x0, 1, rr.ct.X_stage[i], 1) end return nothing end function updateFX!(rr::RadauIntegrator{T_object,NX,NC,NR,NSM}, table::RadauTable{NS}, x0::Vector{Float64}, t::Float64) where {T_object,NX,NC,NR,NSM,NS} for i = 1:NS time_stage = table.c[i] * rr.step.h + t rr.de_object.de(rr.ct.F_X_stage[i], rr.ct.X_stage[i], rr.de_object, time_stage) end return nothing end function calcEw!(rr::RadauIntegrator{T_object,NX,NC,NR,NSM}, table::RadauTable{NS}, x0::Vector{Float64}) where {T_object,NX,NC,NR,NSM,NS} residual = 0.0 for i = 1:NS # rr.cv.store_float .= rr.ct.X_stage[i] - x0 - rr.step.h * sum( rr.A[i, j] * rr.ct.F_X_stage[j]) LinearAlgebra.BLAS.blascopy!(NX, rr.ct.X_stage[i], 1, rr.cv.store_float, 1) LinearAlgebra.BLAS.axpy!(-1.0, x0, rr.cv.store_float) for j = 1:NS coefficient = -rr.step.h * table.A[i, j] # rr.cv.store_float .-= (rr.h * rr.A[i, j]) * rr.ct.F_X_stage[j] LinearAlgebra.BLAS.axpy!(coefficient, rr.ct.F_X_stage[j], rr.cv.store_float) end residual += dot(rr.cv.store_float, rr.cv.store_float) for j = 1:NS # rr.ct.Ew_stage[j] .+= (rr.step.h⁻¹ * rr.λ[j] * rr.T⁻¹[j, i]) * rr.cv.store_float coefficient = rr.step.h⁻¹[1] * table.λ[j] * table.T⁻¹[j, i] LinearAlgebra.BLAS.axpy!(coefficient, rr.cv.store_float, rr.ct.Ew_stage[j]) end end return residual end function updateInvC!(rr::RadauIntegrator{T_object,NX,NC,NR,NSM}, table::RadauTable{NS}) where {T_object,NX,NC,NR,NSM,NS} for i = 1:NS rr.ct.inv_C_stage[i] .= rr.cv.neg_J for k = 1:NX rr.ct.inv_C_stage[i][k, k] += rr.step.h⁻¹[1] * table.λ[i] end ### NOTE: Negative sign taken care of when update X_stage ### _, ipiv, info = LinearAlgebra.LAPACK.getrf!(rr.ct.inv_C_stage[i]) # rr.cv.store_complex .= - inv(rr.cv.C) * rr.ct.Ew_stage[i] LinearAlgebra.LAPACK.getri!(rr.ct.inv_C_stage[i], ipiv) end return nothing end function updateStageX!(rr::RadauIntegrator{T_object,NX,NC,NR,NSM}, table::RadauTable{NS}) where {T_object,NX,NC,NR,NSM,NS} for i = 1:NS ### NOTE: Negative sign taken care of when update X_stage ### # rr.cv.store_complex .= rr.ct.inv_C_stage[i] * rr.ct.Ew_stage[i] LinearAlgebra.BLAS.gemv!('N', one(ComplexF64), rr.ct.inv_C_stage[i], rr.ct.Ew_stage[i], zero(ComplexF64), rr.cv.store_complex) for j = 1:NS # rr.ct.delta_Z_stage[j] .+= rr.T[j, i] * rr.cv.store_complex LinearAlgebra.BLAS.axpy!(table.T[j, i], rr.cv.store_complex, rr.ct.delta_Z_stage[j]) end end for i = 1:NS # Update X_stage # LinearAlgebra.BLAS.axpy!(1.0, real.(rr.ct.delta_Z_stage[i]), rr.ct.X_stage[i]) rr.ct.X_stage[i] .-= real.(rr.ct.delta_Z_stage[i]) end return nothing end
proofpile-julia0005-42492
{ "provenance": "014.jsonl.gz:242493" }
using LinearAlgebra using SparseArrays function degree_selector(t, M, U, p) C = ceil.(abs.(t)*M)'*U C = zero_to_inf.(C) # idx is a CarthesianIndex if C' is a Matrix, or a scalar if C' is a row # vector. idx[1] extract the first index, i.e. row, of the CarthesianIndex cost, idx = findmin(C') m = idx[1] if cost == Inf cost = 0 end s = max(cost/m,1); return (m, s) end function zero_to_inf(x::Number) if x == 0. Inf else x end end
proofpile-julia0005-42493
{ "provenance": "014.jsonl.gz:242494" }
### A Pluto.jl notebook ### # v0.12.21 using Markdown using InteractiveUtils # ╔═╡ 0abe9cd0-7a26-11eb-0d6d-f986ed77c036 using SpecialFunctions, HypergeometricFunctions, StaticArrays # ╔═╡ c009caa0-7a27-11eb-28ef-bb4011cdcd50 using ClenshawCurtisBessel # ╔═╡ 2176cb22-7a63-11eb-0e79-377be1de3061 using DoubleFloats # ╔═╡ d311f31a-7a5f-11eb-3f9b-c3fd0c2655da using LinearAlgebra # ╔═╡ 386fbd2c-7a2a-11eb-051b-13b127ecfc30 struct BrandersPiessensProblem{T,N,M} <: ClenshawCurtisBessel.OliverProblem{T,N,M} a::T ν::T end # ╔═╡ bc00d5ee-7a5d-11eb-2eb5-5b938e7df938 md""" Computes the modifed moments from Branders & Piessens 1987. ```math \begin{aligned} \frac{a^2}{16} &M_{k}(a, \nu) + \left[ (k+1)^2 - \nu^2 - \frac{a^2}{4} \right] M_{k + 2}(a, \nu) + \left[ 4 \nu^2 - 2(k+4) + 4 \right] M_{k+3}(a,\nu) \\ &- \left[ 2(k+4)^2 - 6 + 6\nu^2 - \frac{3a^2}{8} \right] M_{k+4}(a,\nu) + (4\nu^2 + 2(k+4) + 4)M_{k+5}(a,\nu) \\ &+ \left[ (k+7)^2 - \nu^2 - \frac{a^2}{4} \right]M_{k+6} + \frac{a^2}{16} M_{k+8}(a,\nu) \quad = 0 \end{aligned} ``` """ # ╔═╡ d9adcfb6-7a4e-11eb-2ada-fbdffca3d2bc function ClenshawCurtisBessel.OliverP( OP::BrandersPiessensProblem{T}, s, k) where T a, ν = OP.a, OP.ν if s == 8 return a^2/16 elseif s == 7 return zero(T) elseif s == 6 return (k+1)^2 - ν^2 - a^2/4 elseif s == 5 return 4ν^2 - 2(k+4) + 4 elseif s == 4 return -(2 * (k+4)^2 - 6 + 6ν^2 - 3 * a^2 / 8) elseif s == 3 return 4ν^2 + 2(k+4) + 4 elseif s == 2 return (k+7)^2 - ν^2 - a^2/4 elseif s == 1 return zero(T) elseif s == 0 return a^2/16 end end # ╔═╡ 29239542-7a56-11eb-152d-b386e0588444 """ OliverR(OP::BrandersPiessensProblem{T}, i) Computes ``R(i)``, the right side of the recurrence relation. """ ClenshawCurtisBessel.OliverR( OP::BrandersPiessensProblem{T}, i) where T = zero(T) # ╔═╡ dbf33dbe-7a54-11eb-0410-9b91fb2d22c8 import ClenshawCurtisBessel: M₀, M₁, M₂, M₃, Mk_asymptotic # ╔═╡ 97550070-7a54-11eb-3df8-6ff173e946fc function generate_BC(OP::BrandersPiessensProblem{T,8,2}, maxorder) where T a, ν = OP.a, OP.ν MBC = Dict{Int,T}() MBC[-3] = M₃(a, ν) MBC[-2] = M₂(a, ν) MBC[-1] = M₁(a, ν) MBC[ 0] = M₀(a, ν) MBC[ 1] = M₁(a, ν) MBC[ 2] = M₂(a, ν) MBC[ 3] = M₃(a, ν) # Branders & Piessens call the max moment N, we call it maxorder ℓ = max(maxorder, Int(ceil(a + 10))) print(typeof(a), " ", a, " ", ν, " ", ℓ, "\n") MBC[ℓ] = Mk_asymptotic(a, ν, ℓ) MBC[ℓ+1] = Mk_asymptotic(a, ν, ℓ+1) return ℓ+1, MBC end # ╔═╡ 9740e914-7a54-11eb-1a68-0f136447f214 import ClenshawCurtisBessel: assembleP, assembleρ # using BandedMatrices # ╔═╡ 3be2f3f0-7a63-11eb-248f-7727012b9b60 HypergeometricFunctions.logabsgamma(x::Double64) = DoubleFloats.loggamma(abs(x)), sign(gamma(x)) # ╔═╡ 6bbd6c44-7a70-11eb-3859-bd57ba21c45d # SpecialFunctions.besselj(x::Double64, y::AbstractFloat) = # SpecialFunctions.besselj(Float64(x), Float64(x)) # ╔═╡ 972d5cdc-7a54-11eb-0619-85688bb73fcf @time begin bpp = BrandersPiessensProblem{DoubleFloat,8,2}(10.0, 3.5) indexBC, MBC = generate_BC(bpp, 200) ρ = assembleρ(bpp, -3, indexBC, MBC) 𝐏 = assembleP(bpp, -3, indexBC) sol = qr(𝐏) \ ρ end # ╔═╡ ae66d5ca-7a58-11eb-3001-bf4a310c41d4 begin ref = big"0.0002069511037367724863632484164263304887654" (sol[11] .- ref) ./ ref end # ╔═╡ Cell order: # ╠═0abe9cd0-7a26-11eb-0d6d-f986ed77c036 # ╠═c009caa0-7a27-11eb-28ef-bb4011cdcd50 # ╠═386fbd2c-7a2a-11eb-051b-13b127ecfc30 # ╟─bc00d5ee-7a5d-11eb-2eb5-5b938e7df938 # ╠═d9adcfb6-7a4e-11eb-2ada-fbdffca3d2bc # ╠═29239542-7a56-11eb-152d-b386e0588444 # ╠═dbf33dbe-7a54-11eb-0410-9b91fb2d22c8 # ╠═97550070-7a54-11eb-3df8-6ff173e946fc # ╠═9740e914-7a54-11eb-1a68-0f136447f214 # ╠═2176cb22-7a63-11eb-0e79-377be1de3061 # ╠═d311f31a-7a5f-11eb-3f9b-c3fd0c2655da # ╠═3be2f3f0-7a63-11eb-248f-7727012b9b60 # ╠═6bbd6c44-7a70-11eb-3859-bd57ba21c45d # ╠═972d5cdc-7a54-11eb-0619-85688bb73fcf # ╠═ae66d5ca-7a58-11eb-3001-bf4a310c41d4
proofpile-julia0005-42494
{ "provenance": "014.jsonl.gz:242495" }
module Syntax export @traits, @traits_show_implementation using ExprParsers import WhereTraits using WhereTraits: CONFIG using WhereTraits.Utils using WhereTraits.InternalState using Suppressor include("Lowering.jl") using .Lowering include("Parsing.jl") using .Parsing include("Rendering.jl") using .Rendering """ @traits f(a, b) where {!isempty(a), !isempty(b)} = (a[1], b[1]) """ macro traits(expr_original) expr_expanded = macroexpand(__module__, expr_original) expr_traits = _traits(@MacroEnv, expr_expanded, expr_original) expr_traits = esc(expr_traits) if CONFIG.suppress_on_traits_definitions expr_traits = :(@suppress $expr_traits) end expr_traits end function _traits(env, expr_expanded::Expr, expr_original::Expr) parser = EP.AnyOf(EP.Function(), EP.anything) _traits_parsed(env, parse_expr(parser, expr_expanded), expr_original) end function _traits_parsed(env, func_parsed::EP.Function_Parsed, expr_original::Expr) basefunc, lowerings = lower_args_default(func_parsed) basefunc_outer, basefunc_inner = parse_traitsfunction(env, basefunc, expr_original) exprs = merge_and_render_update(env, basefunc_outer, basefunc_inner, doc = true) for lowering in lowerings # As lowering dropped variables, also traits may need to be dropped. Do this silently. lowered_outer, lowered_inner = parse_traitsfunction(env, lowering, expr_original, on_traits_dropped = msg -> nothing) # we don't document lowerings lowered_exprs = merge_and_render_update(env, lowered_outer, lowered_inner, doc = false) append!(exprs, lowered_exprs) end # return nothing in order to not return implementation detail flatten_blocks(Expr(:block, exprs..., nothing)) end function _traits_parsed(env, parsed, expr_original) throw(ArgumentError("@traits macro expects function expression, got `$expr_original`")) end end # module
proofpile-julia0005-42495
{ "provenance": "014.jsonl.gz:242496" }
using AbnormalReturns using Documenter Documenter.makedocs( modules = [AbnormalReturns], sitename = "AbnormalReturns.jl", pages = [ "Introduction" => "index.md", "Example" => "example.md", "API" => "api.md" ] ) deploydocs( repo = "github.com/junder873/AbnormalReturns.jl.git", target = "build", )
proofpile-julia0005-42496
{ "provenance": "014.jsonl.gz:242497" }
# phonopy_project.jl # Demonstration / scratchpad for using JuliaPhonons module push!(LOAD_PATH,"../src") # Temporary versions of modules in PWD using JuliaPhonons # The REPO comes with a basic MAPI cubic unit cell Phonopy calculation P=read_POSCAR(open("POSCAR"),expansion=[2,2,2]) eigenvectors,eigenmodes=read_meshyaml(open("mesh.yaml"),P) myf=open("mode_decomposition.dat","w") gnuplot_header(P,f=myf) for (count,(eigenvector,eigenmode)) in enumerate(zip(eigenvectors,eigenmodes)) output_animated_xyz(P,count,eigenvector,eigenmode) # generates files anim_{count}.xyz decompose_eigenmode_atomtype(P,count,eigenvector,eigenmode) # Output again, to a file for later printing decompose_eigenmode_atomtype(P,count,eigenvector,eigenmode,f=myf) decompose_eigenmode_atom_contributions(P,count,eigenvector) end close(myf)
proofpile-julia0005-42497
{ "provenance": "014.jsonl.gz:242498" }
using SafeTestsets @safetestset "Probability Objects" begin using InformationGeometry, Test, LinearAlgebra, Distributions DS = DataSet([0,0.5,1,1.5],[1.,3.,7.,8.1],[1.2,2.,0.6,1.]) model(x,θ) = θ[1] * x + θ[2] DM = DataModel(DS,model) p = rand(2) @test IsLinear(DM) Dist = DataDist(ydata(DM),ysigma(DM)) @test abs(loglikelihood(DM,p) - logpdf(Dist,EmbeddingMap(DM,p))) < 1e-13 @test Score(DM,p) ≈ transpose(EmbeddingMatrix(DM,p)) * gradlogpdf(Dist,EmbeddingMap(DM,p)) @test FisherMetric(DM,p) ≈ transpose(EmbeddingMatrix(DM,p)) * inv(cov(Dist)) * EmbeddingMatrix(DM,p) # Test AD vs manual derivative @test norm(AutoScore(DM,p) - Score(DM,p)) < 2e-13 @test norm(AutoMetric(DM,p) .- FisherMetric(DM,p), 1) < 2e-9 # Do these tests in higher dimensions, check that OrthVF(PL) IsOnPlane.... # @test OrthVF(DM,XYPlane,p) == OrthVF(DM,p) @test dot(OrthVF(DM,p),Score(DM,p)) < 1e-14 @test norm(FindMLE(DM) - [5.01511545953636, 1.4629658803705]) < 5e-10 end @safetestset "Confidence Regions" begin using InformationGeometry, Test, Plots DS = DataSet([0,0.5,1,1.5],[1.,3.,7.,8.1],[1.2,2.,0.6,1.]) model(x,θ) = θ[1] * x + θ[2]; DM = DataModel(DS,model) DME = DataModel(DataSetExact([0,0.5,1,1.5],0.1ones(4),[1.,3.,7.,8.1],[1.2,2.,0.6,1.]), model) sols = ConfidenceRegions(DM,1:2; tol=1e-6) @test IsStructurallyIdentifiable(DM,sols[1]) == true @test size(SaveConfidence(sols,50)) == (50,4) @test size(SaveGeodesics(sols,50)) == (50,2) @test size(SaveDataSet(DM)) == (4,3) @test ConfidenceRegionVolume(DM,sols[1];N=5000) < ConfidenceRegionVolume(DM,sols[2];N=5000,WE=true) @test size(ConfidenceBands(DM,sols[1]; N=50, plot=false)) == (50,3) @test size(PlotMatrix(inv(FisherMetric(DM,MLE(DM))),MLE(DM); N=50,plot=false)) == (50,2) @test typeof(FittedPlot(DM)) <: Plots.Plot @test typeof(FittedPlot(DME)) <: Plots.Plot @test typeof(ResidualPlot(DM)) <: Plots.Plot @test typeof(VisualizeGeos([MBAM(DM)])) <: Plots.Plot simplermodel(x,p) = p[1]*x; DMSimp = DataModel(DS,simplermodel) @test length(ConfidenceRegion(DMSimp,1.)) == 2 @test ModelComparison(DM,DMSimp)[2] > 0. @test FindFBoundary(DM,1)[1] - FindConfBoundary(DM,1)[1] > 0 end @safetestset "More Boundary tests" begin using InformationGeometry, Test, Random, Distributions, OrdinaryDiffEq, LinearAlgebra Random.seed!(31415); normerr(sig::Number) = rand(Normal(0,sig)); quarticlin(x,p) = p[1]*x.^4 .+ p[2] X = collect(0:0.2:3); err = 2. .+ 2sqrt.(X); Y = quarticlin(X,[1,8.]) + normerr.(err) ToyDME = DataModel(DataSetExact(X,0.1ones(length(X)),Y,err), (x,p) -> 15p[1]^3 * x.^4 .+ p[2]^5) @test InterruptedConfidenceRegion(BigFloat(ToyDME), 8.5; tol=1e-5) isa ODESolution NewX, NewP = TotalLeastSquares(ToyDME) @test LogLike(Data(ToyDME), NewX, EmbeddingMap(Data(ToyDME),Predictor(ToyDME),NewP,NewX)) > loglikelihood(ToyDME, MLE(ToyDME)) @test ModelMap(Predictor(ToyDME), PositiveDomain(2)) isa ModelMap sol = ConfidenceRegion(ToyDME,1; tol=1e-6) @test ApproxInRegion(sol, MLE(ToyDME)) && !ApproxInRegion(sol, sol.u[1] + 1e-5BasisVector(1,2)) #Check that bounding box from ProfileLikelihood coincides roughly with exact box. Mats = ProfileLikelihood(ToyDME,2; plot=false) ProfBox = ProfileBox(ToyDME, InterpolatedProfiles(Mats),1) ExactBox = ConstructCube(ConfidenceRegion(ToyDME,1; tol=1e-6)) @test norm(Center(ProfBox) - Center(ExactBox)) < 3e-5 @test norm(CubeWidths(ProfBox) - CubeWidths(ExactBox)) < 3e-4 @test 0 < PracticallyIdentifiable(Mats) < 2 # Method for general cost functions on 2D domains sol = GenerateBoundary(x->-norm(x,1.5), [1., 0]) @test 0.23 ≤ length(GenerateBoundary(x->-norm(x,1.5), [1., 0]; Boundaries=(u,t,int)->u[1]<0.).u) / length(sol.u) ≤ 0.27 end @safetestset "ODE-based models" begin using InformationGeometry, Test, OrdinaryDiffEq, LinearAlgebra function SIR!(du,u,p,t) S, I, R = u β, γ = p du[1] = -β * I * S du[2] = +β * I * S - γ * I du[3] = +γ * I nothing end SIRsys = ODEFunction(SIR!) infected = [3, 8, 28, 75, 221, 291, 255, 235, 190, 126, 70, 28, 12, 5] SIRDS = InformNames(DataSet(collect(1:14), infected, 5ones(14)), ["Days"], ["Infected"]) SIRinitial = X->([763.0-X[1], X[1], 0.0], X[2:3]) # Use SplitterFunction SIRinitial to infer initial condition I₀ as first parameter SIRDM = DataModel(SIRDS, SIRsys, SIRinitial, x->x[2], [0.6,0.0023,0.46]; tol=1e-6) @test SIRDM isa DataModel @test DataModel(SIRDS, SIRsys, [762, 1, 0.], [2], [0.0022,0.45], true; meth=Tsit5(), tol=1e-6) isa DataModel @test norm(2*EmbeddingMap(Data(SIRDM), Predictor(SIRDM), MLE(SIRDM)) - EmbeddingMap(Data(SIRDM), ModifyODEmodel(SIRDM, x->2*x[2]), MLE(SIRDM))) < 2e-4 end @safetestset "Model Transformations" begin using InformationGeometry, Test PiDM = DataModel(DataSet([0,1], [0.5π,1.5π], [0.5,0.5]), ModelMap((x,p)->p[1], θ->θ[1]-1, HyperCube([[0,5]]))) @test !IsInDomain(Predictor(PiDM), [0.9]) && IsInDomain(Predictor(PiDM), [1.1]) # Translation PiDM2 = DataModel(Data(PiDM), TranslationTransform(Predictor(PiDM),[1.])) @test !IsInDomain(Predictor(PiDM2), [-0.1]) && IsInDomain(Predictor(PiDM2), [0.1]) # LogTransform PiDM3 = DataModel(Data(PiDM), LogTransform(Predictor(PiDM),trues(1))) @test !IsInDomain(Predictor(PiDM3), exp.([1])-[0.1]) && IsInDomain(Predictor(PiDM3), exp.([1])+[0.1]) DS = DataSet([0,0.5,1,1.5],[1.,3.,7.,8.1],[1.2,2.,0.6,1.]) @test FisherMetric(LinearDecorrelation(DataModel(DS, (x,θ)->θ[1] * x + θ[2])), zeros(2)) ≈ [1 0; 0 1] # TranstrumModel = ModelMap((x::Real,p::AbstractVector)->exp(-p[1]*x) + exp(-p[2]*x), θ::AbstractVector -> θ[1]>θ[2], PositiveDomain(2, 1e2), (1,1,2)) # TranstrumDM = DataModel(DataSet([0.33, 1, 3], [0.88,0.5,0.35], [0.1,0.3,0.2]), TranstrumModel) # linTranstrum = LogTransform(TranstrumDM) # RicciScalar(TranstrumDM, MLE(TranstrumDM)), RicciScalar(linTranstrum, MLE(linTranstrum)) # loglikelihood(TranstrumDM, MLE(TranstrumDM)), loglikelihood(linTranstrum, MLE(linTranstrum)) # Try with normal functions too, not only ModelMaps. # Try Ricci in particular, maybe as BigFloat. # Does Score / FisherMetric and AutoDiff still work? end @safetestset "In-place ModelMaps" begin using InformationGeometry, Test, LinearAlgebra DM = DataModel(DataSet([1,2,3],[4,1,5,2,6.5,3.5],[0.5,0.5,0.45,0.45,0.6,0.6], (3,1,2)), (x,p)-> [p[1]^3*x, p[2]^2*x]) dm = InplaceDM(DM) @test EmbeddingMap(DM, MLE(DM)) ≈ EmbeddingMap(dm, MLE(dm)) @test EmbeddingMatrix(DM,MLE(DM)) ≈ EmbeddingMatrix(dm,MLE(dm)) @test Score(DM, MLE(DM)) ≈ Score(dm, MLE(dm)) @test FisherMetric(DM, MLE(DM)) ≈ FisherMetric(dm, MLE(dm)) end @safetestset "Inputting Datasets of various shapes" begin using InformationGeometry, Test, LinearAlgebra, Random, Distributions, StaticArrays, Plots ycovtrue = Diagonal([1,2,3]) |> x->convert(Matrix,x) ptrue = [1.,π,-5.]; ErrorDistTrue = MvNormal(zeros(3),ycovtrue) model(x::AbstractVector{<:Number},p::AbstractVector{<:Number}) = SA[p[1] * x[1]^2 + p[3]^3 * x[2], sinh(p[2]) * (x[1] + x[2]), exp(p[1]*x[1] + p[1]*x[2])] Gen(t) = float.([t,0.5t^2]); Xdata = Gen.(0.5:0.1:3) Ydata = [model(x,ptrue) + rand(ErrorDistTrue) for x in Xdata] Sig = BlockMatrix(ycovtrue,length(Ydata)); DS = DataSet(Xdata,Ydata,Sig) DM = DataModel(DS,model) @test norm(MLE(DM) - ptrue) < 5e-2 DME = DataModel(DataSetExact(DS), model) P = MLE(DM) + 0.5rand(length(MLE(DM))) @test loglikelihood(DM,P) ≈ loglikelihood(DME,P) @test Score(DM,P) ≈ Score(DME,P) Planes, sols = ConfidenceRegion(DM,1) @test typeof(VisualizeSols(Planes,sols)) <: Plots.Plot ODM = OptimizedDM(DME) @test norm(EmbeddingMatrix(DME,MLE(DME)) .- EmbeddingMatrix(ODM,MLE(DME)), 1) < 1e-9 CDM = DataModel(CompositeDataSet(Data(ODM)), Predictor(ODM), dPredictor(ODM), MLE(ODM)) @test abs(loglikelihood(ODM, P) - loglikelihood(CDM, P)) < 5e-6 @test norm(Score(ODM, P) - Score(CDM, P)) < 2e-6 @test norm(FisherMetric(ODM, P) - FisherMetric(CDM, P)) < 2e-6 @test norm(InformationGeometry.ResidualStandardError(ODM) - InformationGeometry.ResidualStandardError(CDM)) < 1e-10 lastDS = Data(Data(CDM))[3] newCDS = vcat(Data(Data(CDM))[1:end-1], [SubDataSet(lastDS, 1:2:Npoints(lastDS))], [SubDataSet(lastDS, 2:2:Npoints(lastDS))]) |> CompositeDataSet # repeat last component newmodel(x::AbstractVector{<:Number},p::AbstractVector{<:Number}) = SA[p[1] * x[1]^2 + p[3]^3 * x[2], sinh(p[2]) * (x[1] + x[2]), exp(p[1]*x[1] + p[1]*x[2]), exp(p[1]*x[1] + p[1]*x[2])] splitCDM = DataModel(newCDS, newmodel, MLE(CDM)) @test abs(loglikelihood(splitCDM, P) - loglikelihood(CDM, P)) < 1e-5 @test norm(Score(splitCDM, P) - Score(CDM, P)) < 2e-4 @test norm(FisherMetric(splitCDM, P) - FisherMetric(CDM, P)) < 2e-3 end @safetestset "Priors" begin using InformationGeometry, Test, LinearAlgebra, Distributions DS1 = DataSet([0,0.5],[1.,3.],[1.2,2.]); DS2 = DataSet([1,1.5],[7.,8.1],[0.6,1.]) DS = join(DS1, DS2); model(x,θ) = θ[1] * x + θ[2]; DM1 = DataModel(DS1,model); DM = DataModel(DS,model); logprior(X) = loglikelihood(DM1, X) DM12 = DataModel(DS2, model, MLE(DM1), logprior) @test norm(MLE(DM) - MLE(DM12)) < 1e-6 @test loglikelihood(DM, MLE(DM)) ≈ loglikelihood(DM12, MLE(DM)) @test norm(Score(DM, MLE(DM)) - Score(DM12, MLE(DM))) < 1e-12 @test FisherMetric(DM, MLE(DM)) ≈ FisherMetric(DM12, MLE(DM)) # Intentionally not giving information about LogPrior input here dm = DataModel(DS, model, MLE(DM), x->0.0) @test loglikelihood(DM, MLE(DM)) ≈ loglikelihood(dm, MLE(DM)) @test Score(DM, MLE(DM)) ≈ Score(dm, MLE(DM)) @test FisherMetric(DM, MLE(DM)) ≈ FisherMetric(dm, MLE(DM)) end @safetestset "Kullback-Leibler Divergences" begin using InformationGeometry, Test, LinearAlgebra, Distributions # Analytical divergences via types defined in Distributions.jl @test KullbackLeibler(MvNormal([1,2,3.],diagm([2,4,5.])),MvNormal([1,-2,-3.],diagm([1,5,2.]))) ≈ 11.056852819440055 @test KullbackLeibler(Normal(1,2),Normal(5,1)) ≈ 8.806852819440055 @test KullbackLeibler(Cauchy(1,3),Cauchy(5,2)) ≈ 0.5355182363563621 @test KullbackLeibler(Exponential(5),Exponential(1)) ≈ 2.3905620875658995 @test KullbackLeibler(Weibull(12,2),Weibull(3,4)) ≈ 2.146124463755512 @test KullbackLeibler(Gamma(5,15),Gamma(20,1)) ≈ 29.409061308330323 # Numerically calculated for via arbitrary types defined in Distributions.jl # ALSO ADD TESTS FOR DISCRETE DISTRIBUTIONS, DISTRIBUTIONS WITH LIMITED DOMAIN @test abs(KullbackLeibler(Cauchy(1,2),Normal(5,1),HyperCube([-20,20]); tol=1e-8) - 16.77645704773449) < 1e-5 @test abs(KullbackLeibler(Cauchy(1,2),Normal(5,1),HyperCube([-20,20]); Carlo=true, N=Int(3e6)) - 16.7764) < 5e-2 @test abs(KullbackLeibler(MvTDist(1,[3,2,1.],diagm([1.,2.,3.])),MvNormal([1,2,3.],diagm([2,4,5.])),HyperCube([[-10,10.] for i in 1:3]); Carlo=true, N=Int(3e6)) - 1.6559288) < 3e-1 # Product distributions, particularly Normal and Cauchy P = [Normal(0,1), Cauchy(1,2)] |> product_distribution Q = [Cauchy(1,1), Cauchy(2,4)] |> product_distribution R = [Normal(2,4), Normal(-1,0.5)] |> product_distribution @test abs(KullbackLeibler(P, Q, HyperCube([[-20,20] for i in 1:2]); tol=1e-7) - 0.719771180) < 1e-8 @test abs(KullbackLeibler(R, P, HyperCube([[-20,20] for i in 1:2]); tol=1e-7) - 9.920379769) < 1e-8 @test abs(KullbackLeibler(P, R, HyperCube([[-20,20] for i in 1:2]); tol=1e-7) - 48.99179438) < 1e-8 # Via any positive (hopefully normalized) functions @test abs(KullbackLeibler(x->pdf(Normal(1,3),x),y->pdf(Normal(5,2),y),HyperCube([-20,20]); Carlo=true, N=Int(3e6)) - KullbackLeibler(Normal(1,3),Normal(5,2))) < 2e-2 @test abs(KullbackLeibler(x->pdf(Normal(1,3),x),y->pdf(Normal(5,2),y),HyperCube([-20,20]); tol=1e-8) - KullbackLeibler(Normal(1,3),Normal(5,2))) < 1e-5 P = MvNormal([1,2,3.],diagm([1,2,1.5])); Q = MvNormal([1,-2,-3.],diagm([2,1.5,1.])); Cube = HyperCube([[-15,15] for i in 1:3]) @test abs(KullbackLeibler(x->pdf(P,x),y->pdf(Q,y),Cube; Carlo=true, N=Int(3e6)) - KullbackLeibler(x->pdf(P,x),y->pdf(Q,y),Cube; tol=1e-8)) < 0.8 end @safetestset "Differential Geometry" begin using InformationGeometry, Test, LinearAlgebra, StaticArrays S2metric((θ,ϕ)) = [1.0 0; 0 sin(θ)^2] function S2Christoffel((θ,ϕ)) Symbol = zeros(suff(ϕ),2,2,2); Symbol[1,2,2] = -sin(θ)*cos(θ) Symbol[2,1,2] = Symbol[2,2,1] = cos(θ)/sin(θ); Symbol end # Calculation by hand works out such that in this special case: S2Ricci(x) = S2metric(x) ConstMetric(x) = Diagonal(ones(2)) # Test Numeric Christoffel Symbols, Riemann and Ricci tensors, Ricci Scalar # Test WITH AND WITHOUT BIGFLOAT x = rand(2) @test norm(ChristoffelSymbol(S2metric,x) .- S2Christoffel(x), 1) < 5e-9 @test norm(ChristoffelSymbol(S2metric,BigFloat.(x)) .- S2Christoffel(BigFloat.(x)), 1) < 1e-40 @test abs(RicciScalar(S2metric,x) - 2) < 5e-4 @test abs(RicciScalar(S2metric,BigFloat.(x)) - 2) < 2e-22 # Use wilder metric and test AutoDiff vs Finite import InformationGeometry: MetricPartials, ChristoffelPartials Y = rand(3) Metric3(x) = [sinh(x[3]) exp(x[1])*sin(x[2]) 0; 0 cosh(x[2]) cos(x[2])*x[3]*x[2]; exp(x[2]) cos(x[3])*x[1]*x[2] 0.] @test MetricPartials(Metric3, Y; ADmode=Val(true)) ≈ MetricPartials(Metric3, Y; ADmode=Val(false)) @test ChristoffelSymbol(Metric3, Y; ADmode=Val(true)) ≈ ChristoffelSymbol(Metric3, Y; ADmode=Val(false)) @test maximum(abs.(ChristoffelPartials(Metric3, Y; ADmode=Val(true)) - ChristoffelPartials(Metric3, Y; ADmode=Val(false), BigCalc=true))) < 1e-11 @test maximum(abs.(Riemann(Metric3, Y; ADmode=Val(true)) - Riemann(Metric3, Y; ADmode=Val(false), BigCalc=true))) < 1e-11 # Test with static arrays Metric3SA(x) = SA[sinh(x[3]) exp(x[1])*sin(x[2]) 0; 0 cosh(x[2]) cos(x[2])*x[3]*x[2]; exp(x[2]) cos(x[3])*x[1]*x[2] 0.] @test MetricPartials(Metric3SA, Y; ADmode=Val(true)) ≈ MetricPartials(Metric3SA, Y; ADmode=Val(false)) @test ChristoffelSymbol(Metric3SA, Y; ADmode=Val(true)) ≈ ChristoffelSymbol(Metric3SA, Y; ADmode=Val(false)) @test maximum(abs.(ChristoffelPartials(Metric3SA, Y; ADmode=Val(true)) - ChristoffelPartials(Metric3SA, Y; ADmode=Val(false), BigCalc=true))) < 1e-11 @test maximum(abs.(Riemann(Metric3SA, Y; ADmode=Val(true)) - Riemann(Metric3SA, Y; ADmode=Val(false), BigCalc=true))) < 1e-11 # Test with BigFloat @test -45 > MetricPartials(Metric3SA, BigFloat.(Y); ADmode=Val(true)) - MetricPartials(Metric3SA, BigFloat.(Y); ADmode=Val(false)) |> maximum |> log10 |> Float64 @test -45 > ChristoffelSymbol(Metric3SA, BigFloat.(Y); ADmode=Val(true)) - ChristoffelSymbol(Metric3SA, BigFloat.(Y); ADmode=Val(false)) |> maximum |> log10 |> Float64 @test -20 > ChristoffelPartials(Metric3SA, BigFloat.(Y); ADmode=Val(true)) - ChristoffelPartials(Metric3SA, BigFloat.(Y); ADmode=Val(false)) |> maximum |> log10 |> Float64 @test -20 > Riemann(Metric3SA, BigFloat.(Y); ADmode=Val(true)) - Riemann(Metric3SA, BigFloat.(Y); ADmode=Val(false)) |> maximum |> log10 |> Float64 @test abs(GeodesicDistance(ConstMetric,[0,0],[1,1]) - sqrt(2)) < 2e-8 @test abs(GeodesicDistance(S2metric,[π/4,1],[3π/4,1]) - π/2) < 1e-9 @test abs(GeodesicDistance(S2metric,[π/2,0],[π/2,π/2]) - π/2) < 1e-8 DS = DataSet([0,0.5,1],[1.,3.,7.],[1.2,2.,0.6]); DM = DataModel(DS, (x,p) -> p[1]^3 *x + p[2]^3) y = MLE(DM) + 0.2(rand(2) .- 0.5) geo = GeodesicBetween(DM, MLE(DM), y; tol=1e-11) @test norm(MLE(DM) - [1.829289173660125,0.942865200406147]) < 1e-7 Len = GeodesicLength(DM,geo) @test abs(InformationGeometry.ParamVol(geo) * InformationGeometry.GeodesicEnergy(DM,geo) - Len^2) < 1e-8 Confnum = InvConfVol(ChisqCDF(pdim(DM), 2*(LogLikeMLE(DM) - loglikelihood(DM, y)))) @test InformationGeometry.GeodesicRadius(DM, Confnum) - Len < 1e-5 # Apply logarithmic map first since it is typically multi-valued for positively curved manifolds. @test norm(ExponentialMap(FisherMetric(DM), MLE(DM), LogarithmicMap(FisherMetric(DM), MLE(DM), y)) - y) < 1 end @safetestset "Numerical Helper Functions" begin using InformationGeometry, Test, BenchmarkTools, ForwardDiff # Compare Integrate1D and IntegrateND # Test integration, differentiation, Monte Carlo, GeodesicLength # TEST WITH AND WITHOUT BIGFLOAT @test abs(InformationGeometry.MonteCarloArea(x->((x[1]^2 + x[2]^2) < 1), HyperCube([[-1,1],[-1,1]])) - π) < 1.5e-3 @test abs(Integrate1D(cos, (0,π/2); tol=1e-12) - IntegrateND(cos, (0,π/2); tol=1e-12)) < 1e-10 z = 3rand() @test abs(Integrate1D(x->2/sqrt(π) * exp(-x^2), [0,z/sqrt(2)]) - ConfVol(z)) < 1e-12 @test abs(LineSearch(x->(x < BigFloat(π))) - π) < 1e-14 @test abs(LineSearch(x->(x < BigFloat(π)), BigFloat(1e-14); tol=1e-30) - BigFloat(π)) < 1e-25 @test abs(CubeVol(TranslateCube(HyperCube([[0,1],[0,π],[-sqrt(2),0]]),rand(3))) - sqrt(2)*π) < 3e-15 k = rand(1:20); r = 10rand() @test InvChisqCDF(k,Float64(ChisqCDF(k,r))) ≈ r @test abs(InvChisqCDF(k,ChisqCDF(k,BigFloat(r)); tol=1e-20) - r) < 1e-18 end
proofpile-julia0005-42498
{ "provenance": "014.jsonl.gz:242499" }
#!/usr/bin/env julia using Printf using Distributed using TimerOutputs function ζ(N,a) s = 0.0 e = 1.0*a VLEN = 512 #vector length __P_SUM = zeros(Float64,VLEN) __DEC = zeros(Float64,VLEN) __D_POW = zeros(Float64,VLEN) __L = zeros(Float64,VLEN) start_index = N - (N % VLEN); end_index = VLEN; #@printf("start = %i, end = %i\n",start_index,end_index) #@printf("N = %i\n",N) for k in 1:VLEN __DEC[k] = convert(Float64,VLEN) __L[k] = convert(Float64,start_index - (k - 1)); end #@printf("(pre warmup) s=%f\n",s) # warm up loop to handle non-vector size clean up before main loop if N == start_index s = 0.0 else for i ∈ N:-1:start_index+1 s += (1.0/i)^e end end #@printf("(post warmup) s=%f\n",s) # main loop for k in start_index:-VLEN:end_index __D_POW = (1.0 ./ __L).^e __P_SUM += __D_POW __L -= __DEC end # clean up loop to handle post vector loop calc #for i in end_index:-1:1 # s += (1.0/i)^e #end # sum reduction for i in 1:VLEN s+=__P_SUM[i] end s end to = TimerOutput() N = 16000000000 st = 1 s = zeros(Float64,32) pd = zeros(Float64,32) ndx = 1 #ENV["JULIA_DEBUG"] = "CUDAnative" s[1] = ζ(N,2) for i=1:1 @printf("s[%i] = %f\n",i,s[i]) end @timeit to "ζ" pd[ndx] = ζ(N,2) ndx+=1 for i=1:1 @printf("pd[%i] = %f\n",i,pd[i]) end show(to) @printf("\n");
proofpile-julia0005-42499
{ "provenance": "014.jsonl.gz:242500" }
using BinDeps using CMakeWrapper @BinDeps.setup function cflags_validator(pkg_names...) return (name, handle) -> begin for pkg_name in pkg_names try run(`pkg-config --cflags $(pkg_name)`) return true catch ErrorException end end false end end """ Director's libraries are unversioned, so there's no possible way to know if a system-installed version of Director is compatible with this interface. Instead, we have to restrict ourselves to only versions of Director which are built locally. """ function is_local_build(name, handle) startswith(relpath(name, @__DIR__), "usr/") end basedir = dirname(@__FILE__) director_version = "0.1.0-234-g74cea84" director_sha = "02c2ef65f8d1d9f3de1d56d129351cd43846d70b" @static if Sys.islinux() python = library_dependency("python", aliases=["libpython2.7.so",], validate=cflags_validator("python", "python2")) qt4 = library_dependency("QtCore", aliases=["libQtCore.so", "libQtCore.so.4.8"], depends=[python]) qt4_opengl = library_dependency("QtOpenGL", aliases=["libQtOpenGL.so", "libQtOpenGL.so.4.8"], depends=[qt4]) director = library_dependency("ddApp", aliases=["libddApp"], depends=[python, qt4, qt4_opengl], validate=is_local_build) linux_distributor = strip(read(`lsb_release -i -s`, String)) linux_version = try VersionNumber(strip(read(`lsb_release -r -s`, String))) catch e if isa(e, ArgumentError) v"0.0.0" else rethrow(e) end end provides(AptGet, Dict("libqt4-dev"=>qt4, "libqt4-opengl-dev"=>qt4_opengl, "python-dev"=>python)) force_source_build = lowercase(get(ENV, "DIRECTOR_BUILD_FROM_SOURCE", "")) in ["true", "1"] director_binary = nothing if !force_source_build if linux_distributor == "Ubuntu" if linux_version >= v"16.04" director_binary = "ubuntu-16.04" elseif linux_version >= v"14.04" director_binary = "ubuntu-14.04" end elseif linux_distributor == "Debian" if linux_version >= v"8.7" director_binary = "ubuntu-14.04" end end end if director_binary !== nothing provides(BuildProcess, (@build_steps begin FileDownloader("https://dl.bintray.com/patmarion/director/director-$(director_version)-$(director_binary).tar.gz", joinpath(basedir, "downloads", "director.tar.gz")) CreateDirectory(joinpath(basedir, "usr")) (`tar xzf $(joinpath(basedir, "downloads", "director.tar.gz")) --directory=usr --strip-components=1`) end), director) else provides(Sources, URI("https://github.com/RobotLocomotion/director/archive/$(director_sha).zip"), director, unpacked_dir="director-$(director_sha)") provides(CMakeProcess(srcdir=joinpath(basedir, "src", "director-$(director_sha)", "distro", "superbuild"), cmake_args=["-DUSE_LCM=ON", "-DUSE_EXTERNAL_INSTALL:BOOL=ON"], targetname=""), director) end elseif Sys.isapple() # Use the libvtkDRCFilters library instead of libddApp # to work around weird segfault when dlclose()-ing libddApp director = library_dependency("vtkDRCFilters", aliases=["libvtkDRCFilters.dylib"], validate=is_local_build) provides(BuildProcess, (@build_steps begin FileDownloader("https://dl.bintray.com/patmarion/director/director-$(director_version)-mac.tar.gz", joinpath(basedir, "downloads", "director.tar.gz")) CreateDirectory(joinpath(basedir, "usr")) (`tar xzf $(joinpath(basedir, "downloads", "director.tar.gz")) --directory=usr --strip-components=1`) end), director) end @BinDeps.install Dict(:ddApp => :libddApp)
proofpile-julia0005-42500
{ "provenance": "014.jsonl.gz:242501" }
@doc raw""" cronbach(Σ::AbstractMatrix) Calculate [Cronbach's alpha](https://en.wikipedia.org/wiki/Cronbach%27s_alpha). This is also known as tau-equivalent reliability (``\rho_T``). `Σ` is a covariance matrix (which means it must be square). # Examples ```jldoctest julia> C = [10 6 6 6; # fictitious data 6 11 6 6; 6 6 12 6; 6 6 6 13]; julia> cronbach(C) 0.8135593220338984 ``` """ function cronbach(Σ::AbstractMatrix) k, m = size(Σ) k == m || throw(DimensionMismatch("dimensions must match")) σᵢⱼ = zero(eltype(Σ)) @inbounds for i in 2:k, j in 1:i-1 σᵢⱼ += Σ[i, j] end σₓ² = 2σᵢⱼ + sum(diag(Σ)) σᵢⱼ /= (k - 1) * k / 2 return k^2 * σᵢⱼ / σₓ² end
proofpile-julia0005-42501
{ "provenance": "014.jsonl.gz:242502" }
nodes(g::Graph) = keys(fadj(g)) out_neighbor(g::Graph, u) = keys(fadj(g)[u]) in_neighbor(g::Graph, u) = keys(badj(g)[u]) has_node(g::Graph, u) = u in nodes(g)
proofpile-julia0005-42502
{ "provenance": "014.jsonl.gz:242503" }
#!/usr/bin/env julia using Test # write your own tests here @test 1 == 1 using CORBITS function test_corbits() #@compat is_windows() ? error("# CORBITS won't work on windows") : nothing a = Cdouble[0.05, 0.15] r_star = convert(Cdouble,0.005) r = Cdouble[0.0001,0.0001] ecc = Cdouble[0.02, 0.1] Omega = Cdouble[0.0, 0.0] omega = Cdouble[ 0.0, 0.5] inc = Cdouble[pi/2, pi/2] use_pl = Cint[1,1] prob_of_transits_approx(a, r_star, r, ecc, Omega, omega, inc, use_pl) end isapprox(test_corbits(), 0.03367003367003367, atol= 0.0001)
proofpile-julia0005-42503
{ "provenance": "014.jsonl.gz:242504" }
using Test import ParallelStencil using ParallelStencil.ParallelKernel import ParallelStencil.ParallelKernel: @reset_parallel_kernel, @is_initialized, @get_package, @get_numbertype, SUPPORTED_PACKAGES, PKG_CUDA, PKG_NONE, NUMBERTYPE_NONE import ParallelStencil.ParallelKernel: @require, @symbols, longnameof TEST_PACKAGES = SUPPORTED_PACKAGES @static if PKG_CUDA in TEST_PACKAGES import CUDA if !CUDA.functional() TEST_PACKAGES = filter!(x->x≠PKG_CUDA, TEST_PACKAGES) end end @static for package in TEST_PACKAGES eval(:( @testset "$(basename(@__FILE__)) (package: $(nameof($package)))" begin @testset "1. Reset of ParallelKernel" begin @testset "Reset if not initialized" begin @require !@is_initialized() @reset_parallel_kernel() @test !@is_initialized() @test @get_package() == $PKG_NONE @test @get_numbertype() == $NUMBERTYPE_NONE end; @testset "Reset if initialized" begin @require !@is_initialized() @init_parallel_kernel($package, Float64) @require @is_initialized() && @get_package() == $package @reset_parallel_kernel() @test length(@symbols($(@__MODULE__), Data)) == 1 @test !@is_initialized() @test @get_package() == $PKG_NONE @test @get_numbertype() == $NUMBERTYPE_NONE end; end; end; )) end == nothing || true;
proofpile-julia0005-42504
{ "provenance": "014.jsonl.gz:242505" }
# Starting point for conditional example for Learning Julia # Create an if-else conditional x = 17 if x < 10 println("x is small") else println("x is big") end # multiple conditions can be specified with if-elseif-else if x < 10 println("x is small") elseif x >= 10 && x < 25 println("x is medium") else println("x is big") end # The ternary operator can condense a comparison println(x < 10 ? "x is less than 10" : "x is 10 or greater") # ternary operator condense if-else conditional statement # if the condition is true, execute the portion between ? and : # if the condition is false, execute the portion after :
proofpile-julia0005-42505
{ "provenance": "014.jsonl.gz:242506" }
import ClausenFunctions n = 10_000_000 x_min = 0.0 x_max = pi data = (x_max - x_min)*rand(Float64, n) + x_min*ones(n) println("Benchmarking cl1::Float64") time_cl1(data) = @time map(ClausenFunctions.cl1, data) map(ClausenFunctions.cl1, data) # trigger compilation time_cl1(data) # trigger compilation time_cl1(data) time_cl1(data) println("Benchmarking cl2::Float64") time_cl2(data) = @time map(ClausenFunctions.cl2, data) map(ClausenFunctions.cl2, data) # trigger compilation time_cl2(data) # trigger compilation time_cl2(data) time_cl2(data) println("Benchmarking cl3::Float64") time_cl3(data) = @time map(ClausenFunctions.cl3, data) map(ClausenFunctions.cl3, data) # trigger compilation time_cl3(data) # trigger compilation time_cl3(data) time_cl3(data) println("Benchmarking cl4::Float64") time_cl4(data) = @time map(ClausenFunctions.cl4, data) map(ClausenFunctions.cl4, data) # trigger compilation time_cl4(data) # trigger compilation time_cl4(data) time_cl4(data) println("Benchmarking cl5::Float64") time_cl5(data) = @time map(ClausenFunctions.cl5, data) map(ClausenFunctions.cl5, data) # trigger compilation time_cl5(data) # trigger compilation time_cl5(data) time_cl5(data) println("Benchmarking cl6::Float64") time_cl6(data) = @time map(ClausenFunctions.cl6, data) map(ClausenFunctions.cl6, data) # trigger compilation time_cl6(data) # trigger compilation time_cl6(data) time_cl6(data) println("Benchmarking cl::Float64") time_cl(k, data) = @time map(x -> ClausenFunctions.cl(k, x), data) n = 1_000_000 data = (x_max - x_min)*rand(Float64, n) + x_min*ones(n) for k in vcat(collect(1:16), [1000, 1001, 1_000_000]) println("Benchmarking cl($(k),x)::Float64") map(x -> ClausenFunctions.cl(k, x), data) # trigger compilation time_cl(k, data) # trigger compilation time_cl(k, data) time_cl(k, data) end println("Benchmarking sl::Float64") time_sl(k, data) = @time map(x -> ClausenFunctions.sl(k, x), data) n = 1_000_000 data = (x_max - x_min)*rand(Float64, n) + x_min*ones(n) for k in vcat(collect(1:31), [1000, 1001, 1_000_000]) println("Benchmarking sl($(k),x)::Float64") map(x -> ClausenFunctions.sl(k, x), data) # trigger compilation time_sl(k, data) # trigger compilation time_sl(k, data) time_sl(k, data) end
proofpile-julia0005-42506
{ "provenance": "014.jsonl.gz:242507" }
module ASTInterface __precompile__(false) using Distributions using CommonRLInterface import Base: rand export ASTMDP, Simulation, Environment, EnvironmentValue, reset!, environment, observe, step!, isterminal, isevent, distance, flatten, unflatten include("AST.jl") include("interface.jl") include("RL.jl") end
proofpile-julia0005-42507
{ "provenance": "014.jsonl.gz:242508" }
""" $SIGNATURES Resolve arguments for `LxObj` by interpolating `#k` appropriately. """ function resolve_args(base::AS, braces::Vector{OCBlock}) res = base for (i, brace) in enumerate(braces) brace_content = stent(brace) # space-sensitive 'unsafe' one res = replace(res, "!#$i" => brace_content) # space-insensitive 'safe' one (e.g. for things like `\mathbb#1`) res = replace(res, "#$i" => " " * brace_content) end return res end """ $(SIGNATURES) Take a `<: LxObj` and try to resolve it by looking up the appropriate definition, applying it then reparsing the result. """ function resolve_lxobj(lxo::LxObj, lxdefs::Vector{LxDef}; inmath::Bool=false)::String # retrieve the definition the environment points to lxd = getdef(lxo) env = lxo isa LxEnv # in case it's defined in Utils or in Franklin name = getname(lxo) fun = Symbol(ifelse(env, "env_", "lx_") * name) # it will be `nothing` in math mode or when defined in utils if isnothing(lxd) # check if it's defined in Utils and act accordingly if isdefined(Main, utils_symb()) && isdefined(utils_module(), fun) raw = Core.eval(utils_module(), :($fun($lxo, $lxdefs))) return reprocess(raw, lxdefs) else # let the math backend deal with the string return lxo.ss end end # the definition can be empty (which can be on purpose, for internal defs) if (!env && isempty(lxd)) || (env && isempty(lxd.first) && isempty(lxd.second)) name = getname(lxo) isdefined(Franklin, fun) && return eval(:($fun($lxo, $lxdefs))) return "" end # non-empty cases if !env partial = resolve_args(lxd, lxo.braces) else partial = resolve_args(lxd.first, lxo.braces) partial *= content(lxo) partial *= resolve_args(lxd.second, lxo.braces) end # if 'inmath' surround accordingly so that this information is preserved inmath && (partial = mathenv(partial)) return reprocess(partial, lxdefs) end """ $SIGNATURES Convenience function to take a markdown string (e.g. produced by a latex command) and re-parse it. """ function reprocess(s::AS, lxdefs::Vector{<:LxDef}; nostripp=false) where T r = convert_md(s, lxdefs; isrecursive=true, isconfig=false, has_mddefs=false, nostripp=nostripp) return r end
proofpile-julia0005-42508
{ "provenance": "014.jsonl.gz:242509" }
export PermList export randpermlist, leastmoved, greatestmoved, supportsize, support, fixed export pow2 export pivtopermlist import DataStructures: list immutable PermList{T<:Real} <: AbstractPerm{T} data::Vector{T} end setindex!(p::PermList, i::Int, k::Integer) = p.data[k] = i getindex{T}(p::PermList{T}, k::Real) = k > length(p.data) ? convert(T,k) : (p.data)[k] length(p::PermList) = length(p.data) randcyclelist(n::Integer) = PermList(randcycle(n)) pivtopermlist{T<:Real}(piv::AbstractArray{T}) = PermList(PermPlain.ipiv2perm(piv)) pivtopermlist{T<:Real}(piv::AbstractArray{T},n) = PermPlain.ipiv2perm(piv,n) ## Apply permutation, and permutation operations ## getindex{T}(v::Array{T,1},p::PermList{Bool}) = error("Silence compiler. You don't want Bool, anyway") getindex(v::Array, p::PermList) = v[p.data] # How to define this for everything? getindex(v::String, p::PermList) = v[p.data] # How to define this for everything? *(p::PermList, k::Real) = k > length(p) ? k : p[k] *{T}(p::PermList, a::AbstractVector{T}) = PermPlain.permapply(p.data,a) # updating ops are "syntactic-operators". Don't know how to define method for them # *=(p::PermList, q::PermList) = (permcompose!(p.data,q.data), p) /(p::PermList, q::PermList) = PermList(PermPlain.permcompose(p.data,invperm(q.data))) # preimage of k under p /(k::Int, p::PermList) = PermPlain.preimage(p.data,k) ## Output ## show(io::IO, p::PermList) = print(io,p) show(p::PermList) = print(p) # This is needed to avoid trying to print PermList with showarray and failing in 1000 ways writemime(io::IO, ::MIME"text/plain", p::PermList) = print(io,p)
proofpile-julia0005-42509
{ "provenance": "014.jsonl.gz:242510" }
""" OrbitInfo Struct containing orbit, start time, and observer location info. Fields: - `start_time`: start time in UTC in the format (year, month, day, hour, minute, second) - `start_time_julian_date`: start time in Julian days - `site_loc_lla`: site latitude, longitude, and height in (deg, deg, meters) - `site_loc_ecef`: site ECEF position in (meters, meters, meters) - `tle_file_name`: file name of satellite TLE file - `tle`: `TLE` struct (data loaded from TLE file) - `orb`: single or vector of `OrbitPropagator` structs - `eop`: Earth Orientation Parameters object """ mutable struct OrbitInfo{T1,T2,T3,T4,T5,T6,T7,T8} start_time::T1 start_time_julian_date::T2 site_loc_lla::T3 site_loc_ecef::T4 tle_file_name::T5 tle::T6 orb::T7 eop::T8 end """ initorbitinfo(source_tle::String, target_tle::String, start_time, site_loc_lla) Initialize the struct OrbitInfo for multiple satellites. Provide the file names of the individual TLE files. Required Arguments: - `source_tle::String`: TLE string for satellite that is trasmitting signal - `target_tle::String`: TLE string for satellite that reflectes transmitted signal from source satellite - `start_time`: start time in UTC in the format (year, month, day, hour, minute, second) - `site_loc_lla`: site latitude, longitude, and height in (deg, deg, meters) Returns: - `OrbitInfo` struct """ function initorbitinfo(source_tle::String, target_tle::String, start_time, site_loc_lla) start_time_julian_date = DatetoJD(start_time...) lat = deg2rad(site_loc_lla[1]) lon = deg2rad(site_loc_lla[2]) height = site_loc_lla[3] site_loc_ecef = GeodetictoECEF(lat, lon, height) tle = [read_tle(source_tle)[1], read_tle(target_tle)[1]] orb = [init_orbit_propagator(Val(:sgp4), tle[1], sgp4_gc_wgs84), init_orbit_propagator(Val(:sgp4), tle[2], sgp4_gc_wgs84)] eop = get_iers_eop(:IAU1980) tle_names = [source_tle, target_tle] return OrbitInfo(start_time, start_time_julian_date, site_loc_lla, site_loc_ecef, tle_names, tle, orb, eop) end """ initorbitinfo(source_tle::TLE, target_tle::TLE, start_time, site_loc_lla) Initialize the struct OrbitInfo for multiple satellites. Provide the already loaded TLE files as `SatelliteToolbox` `TLE` structs. Required Arguments: - `source_tle::TLE`: TLE struct for satellite that is trasmitting signal - `target_tle::TLE`: TLE struct for satellite that reflectes transmitted signal from source satellite - `start_time`: start time in UTC in the format (year, month, day, hour, minute, second) - `site_loc_lla`: site latitude, longitude, and height in (deg, deg, meters) Returns: - `OrbitInfo` struct """ function initorbitinfo(source_tle::TLE, target_tle::TLE, start_time, site_loc_lla) start_time_julian_date = DatetoJD(start_time...) lat = deg2rad(site_loc_lla[1]) lon = deg2rad(site_loc_lla[2]) height = site_loc_lla[3] site_loc_ecef = GeodetictoECEF(lat, lon, height) tle = [source_tle, target_tle] orb = [init_orbit_propagator(Val(:sgp4), tle[1], sgp4_gc_wgs84), init_orbit_propagator(Val(:sgp4), tle[2], sgp4_gc_wgs84)] eop = get_iers_eop(:IAU1980) tle_names = [source_tle.name, target_tle.name] return OrbitInfo(start_time, start_time_julian_date, site_loc_lla, site_loc_ecef, tle_names, tle, orb, eop) end """ initorbitinfo(source_tle::String, start_time, site_loc_lla) Initialize the struct OrbitInfo for single satellite. Provide the file name of the individual TLE file. Required Arguments: - `source_tle::String`: TLE string for satellite that is trasmitting signal - `start_time`: start time in UTC in the format (year, month, day, hour, minute, second) - `site_loc_lla`: site latitude, longitude, and height in (deg, deg, meters) Returns: - `OrbitInfo` struct """ function initorbitinfo(source_tle::String, start_time, site_loc_lla) start_time_julian_date = DatetoJD(start_time...) lat = deg2rad(site_loc_lla[1]) lon = deg2rad(site_loc_lla[2]) height = site_loc_lla[3] site_loc_ecef = GeodetictoECEF(lat, lon, height) tle = read_tle(source_tle)[1] orb = init_orbit_propagator(Val(:sgp4), tle, sgp4_gc_wgs84) eop = get_iers_eop(:IAU1980) return OrbitInfo(start_time, start_time_julian_date, site_loc_lla, site_loc_ecef, source_tle, tle, orb, eop) end """ initorbitinfo(source_tle::TLE, start_time, site_loc_lla) Initialize the struct OrbitInfo for single satellite. Provide the already loaded TLE file as a `SatelliteToolbox` `TLE` struct. Required Arguments: - `source_tle::TLE`: TLE struct for satellite that is trasmitting signal - `start_time`: start time in UTC in the format (year, month, day, hour, minute, second) - `site_loc_lla`: site latitude, longitude, and height in (deg, deg, meters) Returns: - `OrbitInfo` struct """ function initorbitinfo(source_tle::TLE, start_time, site_loc_lla) start_time_julian_date = DatetoJD(start_time...) lat = deg2rad(site_loc_lla[1]) lon = deg2rad(site_loc_lla[2]) height = site_loc_lla[3] site_loc_ecef = GeodetictoECEF(lat, lon, height) tle = source_tle orb = init_orbit_propagator(Val(:sgp4), tle, sgp4_gc_wgs84) eop = get_iers_eop(:IAU1980) return OrbitInfo(start_time, start_time_julian_date, site_loc_lla, site_loc_ecef, source_tle.name, tle, orb, eop) end """ SatelliteRAE Holds information on a given satellite range, azimuth, and elevation from a observer position. Fields: - `name`: name of satellite - `sat_tle`: `Satellite` or `TLE` struct - `julian_date_range`: two element vector containing start and end times in Julian days - `obs_lla`: observer latitude, longitude, and height - `obs_ecef`: observer ECEF coordinates - `Δt`: step size of data - `ts`: vector of time corresponding to data - `sat_range`: distance between satellite and observer - `sat_azimuth`: vector of satellite azimuths - `sat_elevation`: vector of satellite elevations - `sat_ecef`: vector of satellite ECEF coordinates """ struct SatelliteRAE{A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11} name::A1 sat_tle::A2 julian_date_range::A3 obs_lla::A4 obs_ecef::A5 Δt::A6 ts::A7 sat_range::A8 sat_azimuth::A9 sat_elevation::A10 sat_ecef::A11 end """ calcenumatrix(obs_lla) Calculate the ECEF to ENU transformation matrix using the observer's position in LLA. **NOTE:** Latitudes and longitudes are in radians. Required Arguments: - `obs_lla`: observer latitude, longitude, and height in (deg, deg, meters) Returns: - ECEF to ENU transformation matrix """ function calcenumatrix(obs_lla) lat = deg2rad(obs_lla[1]) # rad lon = deg2rad(obs_lla[2]) # rad h = obs_lla[3] # meters return [ -sin(lon) cos(lon) 0; -sin(lat)*cos(lon) -sin(lat)*sin(lon) cos(lat); cos(lat)*cos(lon) cos(lat)*sin(lon) sin(lat)] end """ calcelevation(sat_tle::TLE, julian_date_range, eop, obs_lla; name="Satellite", Δt=1/60/60/24) Calculates the elevation of a given satellite relative to the observer for every second between the range specified in `julian_date_range`. Required Arguments: - `sat_tle::TLE`: satellite TLE struct - `julian_date_range`: two element vector containing start and end times in Julian days - `eop`: Earth Orientation Parameters object - `obs_lla`: observer latitude, longitude, and height in (deg, deg, meters) Optional Arguments: - `name`: name of satellite `(default = "Satellite"` - `Δt`: step size in seconds `(default = 1/60/60/24)` Returns: - `SatelliteRAE` struct """ function calcelevation(sat_tle::TLE, julian_date_range, eop, obs_lla; name="Satellite", Δt=1/60/60/24) obs_ecef = GeodetictoECEF(deg2rad(obs_lla[1]), deg2rad(obs_lla[2]), obs_lla[3]) sat_orb = init_orbit_propagator(Val{:sgp4}, sat_tle) ts = Array(julian_date_range[1]:Δt:julian_date_range[2]) # Propagate orbit to ts sat_orb, rs, vs = propagate_to_epoch!(sat_orb, ts) # Allocate space for storage sat_ranges = Array{Float64}(undef, length(ts)) azs = Array{Float64}(undef, length(ts)) els = Array{Float64}(undef, length(ts)) sat_ecefs = Array{Float64}(undef, length(ts), 3) # Calculate ENU transformation matrix R_ENU = calcenumatrix(obs_lla) for i in 1:length(ts) # Convert orbits to state vectors sat_teme = kepler_to_sv(sat_orb[i]) # Transform TEME to ECEF frame and extract position sat_ecef = svECItoECEF(sat_teme, TEME(), ITRF(), sat_teme.t, eop).r # Calculate user-to-sat vector user_to_sat = sat_ecef - obs_ecef # Caluclate satellite range sat_range = norm(user_to_sat) # Normalize `user_to_sat` user_to_sat_norm = user_to_sat./sat_range # Transform normalized user-to-sat vector to ENU enu = R_ENU*user_to_sat_norm # [East, North, South] # Calculate satellite azimuth az = atan(enu[1], enu[2]) # Calculate satellite elevation el = asin(enu[3]/norm(enu)) # Save values sat_ranges[i] = sat_range azs[i] = rad2deg(az) els[i] = rad2deg(el) sat_ecefs[i,:] = sat_ecef end return SatelliteRAE(name, sat_tle, julian_date_range, obs_lla, obs_ecef, Δt, ts, sat_ranges, azs, els, sat_ecefs) end """ calcelevation(satellite::Satellite, obs_lla; name=string(satellite.id)) Calculates the elevation of a given satellite relative to the observer for all time specified in `satellite.t`. Required Arguments: - `satellite::Satellite`: struct containing satellite orbit information - `obs_lla`: observer latitude, longitude, and height in (deg, deg, meters) Optional Arguments: - `name`: name of satellite `(default = string(satellite.id))` Returns: - `SatelliteRAE` struct """ function calcelevation(satellite::Satellite, obs_lla; name=string(satellite.id)) obs_ecef = GeodetictoECEF(deg2rad(obs_lla[1]), deg2rad(obs_lla[2]), obs_lla[3]) ts = satellite.t Δt = ts[2] - ts[1] julian_date_range = (ts[1], ts[end]) # Allocate space for storage sat_ranges = Array{Float64}(undef, length(ts)) azs = Array{Float64}(undef, length(ts)) els = Array{Float64}(undef, length(ts)) # Calculate ENU transformation matrix R_ENU = calcenumatrix(obs_lla) for i in 1:length(ts) sat_ecef = satellite.r_ecef[i,:] # Calculate user-to-sat vector user_to_sat = sat_ecef - obs_ecef # Caluclate satellite range sat_range = norm(user_to_sat) # Normalize `user_to_sat` user_to_sat_norm = user_to_sat./sat_range # Transform normalized user-to-sat vector to ENU enu = R_ENU*user_to_sat_norm # [East, North, South] # Calculate satellite azimuth az = atan(enu[1], enu[2]) # Calculate satellite elevation el = asin(enu[3]/norm(enu)) # Save values sat_ranges[i] = sat_range azs[i] = rad2deg(az) els[i] = rad2deg(el) end return SatelliteRAE(name, satellite, julian_date_range, obs_lla, obs_ecef, Δt, ts, sat_ranges, azs, els, satellite.r_ecef) end """ calcelevation(sat_ecef, obs_lla) Calculates the elevation of an object at a given ECEF coordinate specified by `sat_ecef`. Returns only `(sat_range, az, el)` instead of `SatelliteRAE` struct. Format is `(meters, deg, deg)`. Required Arguments: - `sat_ecef`: satellite ECEF coordinates with all components in meters - `obs_lla`: observer latitude, longitude, and height in (deg, deg, meters) Returns: - `sat_range`: range between satellite and observer in meters - `az`: satellite azimuth in degrees - `el`: satellite elevation in degrees """ function calcelevation(sat_ecef, obs_lla) # Calculate ENU transformation matrix R_ENU = calcenumatrix(obs_lla) obs_ecef = GeodetictoECEF(deg2rad(obs_lla[1]), deg2rad(obs_lla[2]), obs_lla[3]) # Calculate user-to-sat vector user_to_sat = sat_ecef - obs_ecef # Caluclate satellite range sat_range = norm(user_to_sat) # Normalize `user_to_sat` user_to_sat_norm = user_to_sat./sat_range # Transform normalized user-to-sat vector to ENU enu = R_ENU*user_to_sat_norm # [East, North, South] # Calculate satellite azimuth az = atan(enu[1], enu[2]) # Calculate satellite elevation el = asin(enu[3]/norm(enu)) # Convert from degrees to radians az = rad2deg(az) el = rad2deg(el) return (sat_range, az, el) end """ getGPSSatnums(obs_time_JD, prns) Get the NORAD ID for each PRN for a given observationn time in Julian Days. Read from the `GPSData` dictionary. Returns dictionary with keys being the prns. Required Arguments: - `obs_time_JD`: observation time in Julian Days - `prns`: PRNs to get NORAD ID for Returns: - `gps_satnums::Dict`: dictionary containing NORAD IDs for each PRN * dictionary keys are the PRN numbers """ function getGPSSatnums(obs_time_JD, prns) gps_satnums = Dict{Int,Int}() for prn in prns for sv in collect(keys(GPSData[prn])) if GPSData[prn][sv]["active"] if obs_time_JD >= GPSData[prn][sv]["start_julian_date"] gps_satnums[prn] = GPSData[prn][sv]["satnum"] end else if ((obs_time_JD > GPSData[prn][sv]["start_julian_date"]) && (obs_time_JD < GPSData[prn][sv]["end_julian_date"])) gps_satnums[prn] = GPSData[prn][sv]["satnum"] end end end end return gps_satnums end """ getTLEs(obs_time_JD, satnums; Δdays=5) Query Space-Track.org for TLEs matching time and satnum criteria. Parse and determine TLEs for eac satnum that is closest but before the observation time. Required Arguments: - `obs_time_JD`: observation time in Julian Days - `satnums`: vector of satelleite NORAD IDs Optional Arguments: - `Δdays`: Number of days to look before and up to `obs_time_JD` Returns: - `filtered_tles::Dict{Int,TLE}`: dictionary containing the TLEs for each satellite NORAD ID * dictionary keys are the NORAD IDs """ function getTLEs(obs_time_JD, satnums; Δdays=5) obs_time_JD_begin = obs_time_JD - Δdays obs_time_begin = JDtoDate(obs_time_JD_begin) obs_time = JDtoDate(obs_time_JD+1) satnum_list = string(satnums[1]) for i in 2:length(satnums) satnum_list = string(satnum_list, ",", string(satnums[i])) end tle_file = string(homedir(), "/.GNSSTools/tles.tle") date_range = string(string(obs_time_begin[1], pad=4), "-", string(obs_time_begin[2], pad=2), "-", string(obs_time_begin[3], pad=2), "--", string(obs_time[1], pad=4), "-", string(obs_time[2], pad=2), "-", string(obs_time[3], pad=2)) login_url = "https://www.space-track.org/ajaxauth/login" base_query = "query=https://www.space-track.org/basicspacedata/query/class/tle/EPOCH/" query_tail = "/orderby/NORAD_CAT_ID/format/3le" norad_cat_id = "/NORAD_CAT_ID/" # Get username from user print("Provide Space-Track.org username: ") username = readline(stdin) secret_pass = Base.getpass("Provide Space-Track.org user password") password = read(secret_pass, String) run(`curl -o $tle_file $login_url -d identity=$username"""&"""password=$password"""&"""$base_query$date_range$norad_cat_id$satnum_list$query_tail`; wait=false); Base.shred!(secret_pass) tles = read_tle(tle_file) filtered_tles = Dict{Int,TLE}() for satnum in satnums Δts = [] idxs = [] for i in 1:length(tles) tle = tles[i] if tle.sat_num == satnum append!(Δts, abs(tle.epoch-obs_time_JD)) append!(idxs, i) end end if ~isempty(Δts) min_Δt_idx = argmin(Δts) filtered_tles[satnum] = tles[idxs[min_Δt_idx]] else @warn "$satnum had no TLE results. Increase Δdays (currently set to $Δdays)." end end return filtered_tles end
proofpile-julia0005-42510
{ "provenance": "014.jsonl.gz:242511" }
#= Contains code derived from the Python module "Newick" Copyright 2003-2008 by Thomas Mailund, released under the GPL v.2 =# struct Token name::Symbol value::Any # Constructor that preprocesses `:string` tokens # TODO: Do the preprocessing elsewhere, this is too specific! function Token(name::Symbol, str::String) name == :string ? value = strip(str, ['"', '\'', ' ', '\n']) : value = str value = String(value) new(name, value) end end mutable struct Lexer input::String next_token::Union{Nothing, Token} tokendefs::Vector{Tuple{Symbol,Regex}} end """ Return the current token in the lexer without taking it out from the lexer. """ function peektoken(lxr::Lexer)::Union{Token,Nothing} isnothing(lxr.next_token) || return lxr.next_token length(lxr.input) == 0 && return nothing m = nothing for (defname, defregex) in lxr.tokendefs m = match(defregex, lxr.input) if ! isnothing(m) lxr.next_token = Token(defname, convert(String, m.match)) return lxr.next_token end end error("Invalid token received") end """ Take out the current token in the lexer and return it """ function next!(lxr::Lexer)::Token token = lxr.next_token if isnothing(token) token = peektoken(lxr) end if ! isnothing(token) # lxr.input = lxr.input[length(token.value) + 1 : end] lxr.input = lxr.input[nextind(lxr.input, lastindex(token.value)):end] lxr.next_token = nothing end return token end function readtoken!(lxr::Lexer, name::Symbol)::Token token = peektoken(lxr) if token.name ≠ name error("Expected a `$(name)` token, but received a `$(token.name)` token. String: $(lxr.input)") end next!(lxr) return token end function skiptoken!(lxr::Lexer, name::Symbol)::Lexer while peektoken(lxr).name == name readtoken!(lxr, name) end return lxr end
proofpile-julia0005-42511
{ "provenance": "014.jsonl.gz:242512" }
using FTCTests using Test @testset "FTCTests.jl" begin include("privileged_name.jl") include("run_sim.jl") include("evaluate.jl") end
proofpile-julia0005-42512
{ "provenance": "014.jsonl.gz:242513" }
""" LowRankTransform ``` P = rand(10,5) tr = LowRankTransform(P) ``` Apply the low-rank projection realised by the matrix `P` The second dimension of `P` must match the number of features of the target. """ struct LowRankTransform{T<:AbstractMatrix{<:Real}} <: Transform proj::T end function set!(t::LowRankTransform{<:AbstractMatrix{T}},M::AbstractMatrix{T}) where {T<:Real} @assert size(t) == size(M) "Size of the given matrix $(size(M)) and the projection matrix $(size(t)) are not the same" t.proj .= M end params(t::LowRankTransform) = t.proj Base.size(tr::LowRankTransform,i::Int) = size(tr.proj,i) Base.size(tr::LowRankTransform) = size(tr.proj) # TODO Add test function transform(t::LowRankTransform,X::AbstractMatrix{<:Real},obsdim::Int=defaultobs) @boundscheck size(t,2) != size(X,feature_dim(obsdim)) ? throw(DimensionMismatch("The projection matrix has size $(size(t)) and cannot be used on X with dimensions $(size(X))")) : nothing @inbounds _transform(t,X,obsdim) end function transform(t::LowRankTransform,x::AbstractVector{<:Real},obsdim::Int=defaultobs) #TODO Add test @assert size(t,2) == length(x) "Vector has wrong dimensions $(length(x)) compared to projection matrix" t.proj*x end _transform(t::LowRankTransform,X::AbstractVecOrMat{<:Real},obsdim::Int=defaultobs) = obsdim == 2 ? t.proj * X : X * t.proj'
proofpile-julia0005-42513
{ "provenance": "014.jsonl.gz:242514" }
@testset "paretoset" begin p = hcat(([x,y] for x in 0:0.2:1 for y in 0:0.2:1 if (x-1)^2+(y-1)^2<=1)...) @test p[:,ParetoSet(p)] == [0.0 0.2 0.4 1.0; 1.0 0.4 0.2 0.0] @test p[:,ParetoSet(p,[:Min, :Min])] == [0.0 0.2 0.4 1.0; 1.0 0.4 0.2 0.0] @test p[:,ParetoSet(p,[EfficientGlobalOptimization.Min, EfficientGlobalOptimization.Min])] == [0.0 0.2 0.4 1.0; 1.0 0.4 0.2 0.0] p = hcat(([x,y] for x in 0:0.2:1 for y in 0:0.2:1 if x^2+y^2<=1)...) @test p[:,ParetoSet(p, [:Max, :Max])] == [0.0 0.6 0.8 1.0; 1.0 0.8 0.6 0.0] @test p[:,ParetoSet(p, [EfficientGlobalOptimization.Max, EfficientGlobalOptimization.Max])] == [0.0 0.6 0.8 1.0; 1.0 0.8 0.6 0.0] end
proofpile-julia0005-42514
{ "provenance": "014.jsonl.gz:242515" }
map_str = "" width, height = Int32(0), Int32(0) open("day03/day03.in") do io global map_str, width, height for line in readlines(io) map_str = map_str * line width = length(line) height += 1 end end function encounters(right::Int64, down::Int64)::Int64 posx, posy = Int64(1+right), Int64(1+down) tree_count = Int64(0) while posy <= height global map_str if map_str[(posy-1)*width+posx] == '#' tree_count += 1 end posx = (posx+right-1) % width + 1 posy = posy+down end return tree_count end c = encounters(1, 1) c *= encounters(3, 1) c *= encounters(5, 1) c *= encounters(7, 1) c *= encounters(1, 2) println(c)
proofpile-julia0005-42515
{ "provenance": "014.jsonl.gz:242516" }
function thermalflowlimits(m::JuMP.AbstractModel, system_formulation::Type{S}, devices::Array{B,1}, time_periods::Int64) where {B <: PowerSystems.Branch, S <: PM.AbstractDCPForm} fbr = m[:fbr] name_index = m[:fbr].axes[1] time_index = m[:fbr].axes[2] device_index = Dict(value => key for (key, value) in Dict(collect(enumerate([d.name for d in devices])))) Flow_max_tf = JuMP.JuMPArray(Array{ConstraintRef}(undef,length(name_index), time_periods), name_index, time_index) Flow_max_ft = JuMP.JuMPArray(Array{ConstraintRef}(undef,length(name_index), time_periods), name_index, time_index) for t in time_index, (ix, name) in enumerate(name_index) if name in keys(device_index) if name == devices[device_index[name]].name Flow_max_tf[name, t] = @constraint(m, fbr[name, t] <= devices[device_index[name]].rate) Flow_max_ft[name, t] = @constraint(m, fbr[name, t] >= -1*devices[device_index[name]].rate) else @error "Branch name in Array and variable do not match" end else @warn "No flow limit constraint populated for $(name)" end end JuMP.register_object(m, :Flow_max_ToFrom, Flow_max_tf) JuMP.register_object(m, :Flow_max_FromTo, Flow_max_ft) return m end function thermalflowlimits(m::JuMP.AbstractModel, system_formulation::Type{S}, devices::Array{B,1}, time_periods::Int64) where {B <: PowerSystems.Branch, S <: PM.AbstractDCPLLForm} fbr_fr = m[:fbr_fr] fbr_to = m[:fbr_to] name_index = m[:fbr_fr].axes[1] time_index = m[:fbr_to].axes[2] device_index = Dict(value => key for (key, value) in Dict(collect(enumerate([d.name for d in devices])))) Flow_max_tf = JuMP.JuMPArray(Array{ConstraintRef}(undef,length(name_index), time_periods), name_index, time_index) Flow_max_ft = JuMP.JuMPArray(Array{ConstraintRef}(undef,length(name_index), time_periods), name_index, time_index) for t in time_index, (ix, name) in enumerate(name_index) if name in keys(device_index) if name == devices[device_index[name]].name Flow_max_tf[name, t] = @constraint(m, fbr_fr[name, t] <= devices[device_index[name]].rate) Flow_max_ft[name, t] = @constraint(m, fbr_to[name, t] >= -1*devices[device_index[name]].rate) else @error "Branch name in Array and variable do not match" end else @warn "No flow limit constraint populated for $(name)" end end JuMP.register_object(m, :Flow_max_ToFrom, Flow_max_tf) JuMP.register_object(m, :Flow_max_FromTo, Flow_max_ft) return m end #TODO: Implement Limits in AC. Use Norm from JuMP Implemented norms.
proofpile-julia0005-42516
{ "provenance": "014.jsonl.gz:242517" }
# Note that this script can accept some limited command-line arguments, run # `julia build_tarballs.jl --help` to see a usage message. using BinaryBuilder name = "libsass" version = v"3.5.5" # Collection of sources required to build SassBuilder sources = [ "https://github.com/sass/libsass.git" => "39e30874b9a5dd6a802c20e8b0470ba44eeba929", ] # Bash recipe for building across all platforms script = raw""" cd $WORKSPACE/srcdir/libsass autoreconf --force --install ./configure --prefix=$prefix --host=$target make -j${nproc} make install """ platforms = [ # glibc Linuces Linux(:i686), Linux(:x86_64), Linux(:aarch64), Linux(:armv7l), Linux(:powerpc64le), # musl Linuces Linux(:i686, :musl), Linux(:x86_64, :musl), Linux(:aarch64, :musl), Linux(:armv7l, :musl), # BSDs MacOS(:x86_64), FreeBSD(:x86_64), # Windows Windows(:i686), Windows(:x86_64, compiler_abi = CompilerABI(:gcc7)) ] # The products that we will ensure are always built products(prefix) = [ LibraryProduct(prefix, "libsass", :libsass_so) ] # Dependencies that must be installed before this package can be built dependencies = [ ] # Build the tarballs, and possibly a `build.jl` as well. build_tarballs(ARGS, name, version, sources, script, platforms, products, dependencies)
proofpile-julia0005-42517
{ "provenance": "014.jsonl.gz:242518" }
using BenchmarkTools BenchmarkTools.DEFAULT_PARAMETERS.samples = 100 function compute(d::Int, n::Int)::Int function mod1(k::Float64)::Float64 k %= 1 return k < 0.5 ? k : k - 1 end check(k::Float64)::Bool = (lower && lower_limit ≤ k < upper_limit) || (!lower && lower_limit ≥ k > upper_limit) limit = (log(d + 1) - log(d)) / log(10) lower_limit, upper_limit = log(d) / log(10) % 1, log(d + 1) / log(10) % 1 lower = lower_limit < upper_limit error = log(2) / log(10) x = error % 1 t, convergent, convergent_error = 0, 1, 1 while abs(convergent_error) > limit x, integer = modf(1 / x) convergent, t = convergent * integer + t, convergent convergent_error = mod1(convergent * error) end x, integer = modf(1 / x) semi_convergent, semi_convergent_error = t, 1 while abs(semi_convergent_error) > limit semi_convergent += convergent semi_convergent_error = mod1(semi_convergent * error) end differences = (convergent, semi_convergent, convergent + semi_convergent) if convergent_error > 0 convergent_limit = convergent * ceil(lower_limit / convergent_error) else convergent_limit = semi_convergent * ceil(lower_limit / semi_convergent_error) end convergents = Vector{Float64}() while convergent < convergent_limit append!(convergents, convergent) convergent, t = integer * convergent + t, convergent x, integer = modf(1 / x) end convergents = convergents[2:end] for difference ∈ reverse(convergents) while convergent_limit > difference x = (convergent_limit - difference) * error % 1 if check(x) convergent_limit -= difference else break end end end while true checked = false for difference ∈ differences if difference > convergent_limit continue end x = (convergent_limit - difference) * error % 1 if check(x) checked = true convergent_limit -= difference break end end if !checked break end end while true for difference ∈ differences x = (convergent_limit + difference) * error % 1 if check(x) n -= 1 if n == 0 return trunc(Int, convergent_limit) end convergent_limit += difference break end end end end compute(12, 1) compute(12, 2) compute(123, 45) compute(123, 678910) @benchmark compute(123, 678910)
proofpile-julia0005-42518
{ "provenance": "014.jsonl.gz:242519" }
# This file is a part of BAT.jl, licensed under the MIT License (MIT). using Test Test.@testset "rngs" begin include("test_rng_init.jl") end
proofpile-julia0005-42519
{ "provenance": "014.jsonl.gz:242520" }
using ADMPS using ADMPS: model_tensor, tensorfromclassical using Test @testset "exampletensor" begin β = rand() @test model_tensor(Ising(β)) ≈ tensorfromclassical([β -β; -β β]) @test mag_tensor(Ising(β)) !== nothing @test energy_tensor(Ising(β)) !== nothing end
proofpile-julia0005-42520
{ "provenance": "014.jsonl.gz:242521" }
module Turkie using AbstractPlotting: Scene, Point2f0 using AbstractPlotting: barplot!, lines!, scatter! # Plotting tools using AbstractPlotting: Observable, Node, lift, on # Observable tools using AbstractPlotting: recordframe! # Recording tools using AbstractPlotting.MakieLayout # Layouting tool using Colors, ColorSchemes # Colors tools using KernelDensity # To be able to give a KDE using OnlineStats # Estimators using DynamicPPL: VarInfo, Model export TurkieParams, TurkieCallback export addIO!, record include("online_stats_plots.jl") const std_colors = ColorSchemes.seaborn_colorblind name(s::Symbol) = string(s) name(s::OnlineStat) = nameof(typeof(s)) """ TurkieCallback(model::DynamicPPL.Model, plots::Series/AbstractVector = ) ## Keyword arguments - `showtrace=true` : Show the trace of the variable - `window=0` : Use a window for plotting the trace, 0 will not use a window """ TurkieCallBack struct TurkieCallback scene::Scene data::Dict{Symbol, MovingWindow} axis_dict::Dict vars::Dict{Symbol, Any} params::Dict{Any, Any} iter::Observable{Int64} end function TurkieCallback(model::Model, plots::Union{Series, AbstractVector} = [:histkde, Mean(), Variance(), AutoCov(20)]; kwargs...) variables = VarInfo(model).metadata return TurkieCallback(Dict(Pair.(keys(variables), Ref(plots))), Dict(kwargs...)) end function TurkieCallback(varsdict::Dict; kwargs...) return TurkieCallback(varsdict, Dict(kwargs...)) end function TurkieCallback(vars::Dict, params::Dict) # Create a scene and a layout outer_padding = 5 scene, layout = layoutscene(outer_padding, resolution = (1200, 700)) display(scene) window = get!(params, :window, 1000) n_rows = length(keys(vars)) n_cols = maximum(length.(values(vars))) n_plots = n_rows * n_cols iter = Node(0) data = Dict{Symbol, MovingWindow}(:iter => MovingWindow(window, Int64)) obs = Dict{Symbol, Any}() axis_dict = Dict() for (i, (variable, plots)) in enumerate(vars) data[variable] = MovingWindow(window, Float32) axis_dict[(variable, :varname)] = layout[i, 1, Left()] = Label(scene, string(variable), textsize = 30) axis_dict[(variable, :varname)].padding = (0, 50, 0, 0) onlineplot!(scene, layout, axis_dict, plots, iter, data, variable, i) end on(iter) do i if i > 10 # To deal with autolimits a certain number of samples are needed for (variable, plots) in vars for p in plots autolimits!(axis_dict[(variable, p)]) end end end end MakieLayout.trim!(layout) TurkieCallback(scene, data, axis_dict, vars, params, iter) end function addIO!(cb::TurkieCallback, io) cb.params[:io] = io end function (cb::TurkieCallback)(rng, model, sampler, transition, iteration) fit!(cb.data[:iter], iteration) for (vals, ks) in values(transition.θ) for (k, val) in zip(ks, vals) if haskey(cb.data, Symbol(k)) fit!(cb.data[Symbol(k)], Float32(val)) end end end cb.iter[] += 1 if haskey(cb.params, :io) recordframe!(cb.params[:io]) end end end
proofpile-julia0005-42521
{ "provenance": "014.jsonl.gz:242522" }
struct IndividualState #TODO change to immutable health::HealthState freedom::FreedomState detected::DetectionStatus quarantine_level::SafeUInt8 end IndividualState() = IndividualState( Healthy, Free, Undetected, 0 ) show(io::IO, s::IndividualState) = print(io, "(",s.health, ", ", s.freedom, ", ", s.detected, ", ", s.quarantine_level, ")")
proofpile-julia0005-42522
{ "provenance": "014.jsonl.gz:242523" }
@testset "SparseRadialMap Multi-threading test with optimization and evaluation of the resulting map" begin X = Matrix([6.831108232125667 6.831108465893829 10.748176564682273 17.220877261555913; 7.341399771164814 7.341399033871628 11.440770534993137 18.015116463525178; 6.877822405336048 6.877822863906546 10.793381797612751 17.379545045967195; 6.971116690210811 6.971117274254750 10.941318835214862 17.571340756941474; 7.800189373932513 7.800189247976281 11.929084958885008 18.852191934527564; 6.706165535739543 6.706164938380805 10.596868885136731 17.100665224055952; 7.162689725595848 7.162690676866085 11.236535720904731 17.691824497167673; 7.700262639909202 7.700262776963255 11.870709137884843 18.589199307190668; 6.941836510989174 6.941836045832242 10.822143995520504 17.705463568541791; 7.284400905037024 7.284402833890172 11.438244192350945 17.713180862215779; 6.114110264862537 6.114110399157427 9.744642327011279 16.427244631267527; 6.884587321648968 6.884587349033709 10.880879551471059 17.360443337222691; 6.964593674795581 6.964592742775720 11.015485574206627 17.379079978320874; 7.174466645033212 7.174468203234895 11.165089908005559 17.802087293640490; 7.625148752606352 7.625148374481078 11.784628799983244 18.470370177818385; 7.878948627898106 7.878948112320454 12.118366730171301 18.770876038639738; 7.406860218451342 7.406861450644357 11.470902695133232 18.293040279245396; 7.308212626757207 7.308212927902813 11.381148951581917 17.962547003679237; 7.519983057000856 7.519981781231936 11.597728250168640 18.407564589808729; 7.813106349722561 7.813107415959238 11.973288464744240 18.802480702520111]') order = [[-1], [1; 1], [-1; 1; 0], [-1; 1; 1; 0]] T = SparseRadialMap(4, order; λ = 0.0) Tserial = SparseRadialMap(4, order; λ = 0.0) Tthread = SparseRadialMap(4, order; λ = 0.0) # Run serial code optimize(T, X, nothing; start = 2) # Run serial code optimize(Tserial, X, nothing; start = 2, P = serial) # Run multi-threading code @show Threads.nthreads() optimize(Tthread, X, nothing; start = 2, P = thread) @test norm(T(X[:,1]) - [6.831108232125667; 0.07966241537360474; -0.18141931240603526; -2.0970508045942893])<1e-8 @test norm(Tserial(X[:,1]) - [6.831108232125667; 0.07966241537360474; -0.18141931240603526; -2.0970508045942893])<1e-8 @test norm(Tthread(X[:,1]) - [6.831108232125667; 0.07966241537360474; -0.18141931240603526; -2.0970508045942893])<1e-8 end
proofpile-julia0005-42523
{ "provenance": "014.jsonl.gz:242524" }
################################################################################ # Copyright 2020, Marta Vanin, Tom Van Acker # ################################################################################ # PowerModelsDistributionStateEstimation.jl # # An extention package of PowerModels(Distribution).jl for Static Power System # # State Estimation. # ################################################################################ # using pkgs using Distributions, GaussianMixtures using HDF5 using Ipopt using PowerModels, PowerModelsDistribution using PowerModelsDistributionStateEstimation #using SCS #removed while SDP tests are not active using Test # pkg const const _DST = Distributions const _GMM = GaussianMixtures const _PMD = PowerModelsDistribution const _PMDSE = PowerModelsDistributionStateEstimation #network and feeder from ENWL for tests ntw, fdr = 4, 2 season = "summer" time_step = 144 elm = ["load", "pv"] pfs = [0.95, 0.90] rm_transfo = true rd_lines = true # set solvers ipopt_solver = optimizer_with_attributes(Ipopt.Optimizer,"max_cpu_time"=>300.0, "tol"=>1e-9, "print_level"=>0) # scs_solver = optimizer_with_attributes(SCS.Optimizer, "max_iters"=>20000, "eps"=>1e-5, # "alpha"=>0.4, "verbose"=>0) #deactivated while SDP tests not active @testset "PowerModelsDistributionStateEstimation" begin include("bad_data.jl") include("distributions.jl") include("estimation_criteria.jl") include("mixed_measurements.jl") include("non_exact_forms.jl") include("power_flow.jl") include("pseudo_measurements.jl") include("single_conductor_branches.jl") include("utils_and_start_val.jl") include("with_errors.jl") end
proofpile-julia0005-42524
{ "provenance": "014.jsonl.gz:242525" }
module Day20 using AdventOfCode2019 function day20(input::String = readInput(joinpath(@__DIR__, "..", "data", "day20.txt"))) return solve(input, (true, true)) end function solve(input, parts) solution = Array{Int,1}(undef, sum(parts)) cm = char_matrix(input) imat = int_matrix(cm) specialPoints = find_portals(cm) portals = create_portal_lookup(specialPoints) start = specialPoints["AA"][1] finish = specialPoints["ZZ"][1] if parts[1] solution[1] = flood!(copy(imat), portals, start, finish) end if parts[2] solution[2] = flood_levels(imat, portals, start, finish) end return solution end function char_matrix(input::String) m = split.(split(input, "\n"), "") nrows = length(m) nrows > 1 || throw(ArgumentError("Invalid input")) ncols = length(m[1]) if length(m[end]) <= 1 nrows -= 1 end for i = 1:nrows length(m[i]) == ncols || throw(ArgumentError("Invalid input in row $i")) end charmat = Array{Char, 2}(undef, nrows, ncols) for i = 1:nrows for (j, s) in enumerate(m[i]) charmat[i, j] = m[i][j][1] end end return charmat end function int_matrix(charmat::Array{Char,2}) m, n = size(charmat) imat = Array{Int,2}(undef, m, n) for i = 1:m for j = 1:n if charmat[i, j] == '.' # walkable square imat[i, j] = -1 elseif isuppercase(charmat[i, j]) # letter imat[i, j] = -2 else # non-walkable square imat[i, j] = -3 end end end return imat end function find_portals(charmat::Array{Char,2}) letterDict = Dict{String,Array{CartesianIndex,1}}() letterPos = findall(x -> isuppercase(x), charmat) m, n = size(charmat) for ci in letterPos i, j = ci.I if j + 1 <= n && isuppercase(charmat[i, j + 1]) s = join(charmat[i, j:j+1]) if !haskey(letterDict, s) letterDict[s] = Array{CartesianIndex,1}() end if j + 2 <= n && charmat[i, j + 2] == '.' push!(letterDict[s], CartesianIndex(i, j + 2)) elseif j - 1 >= 0 && charmat[i, j - 1] == '.' push!(letterDict[s], CartesianIndex(i, j - 1)) end end if i + 1 <= m && isuppercase(charmat[i + 1, j]) s = join(charmat[i:i+1, j]) if !haskey(letterDict, s) letterDict[s] = Array{CartesianIndex,1}() end if i + 2 <= m && charmat[i + 2, j] == '.' push!(letterDict[s], CartesianIndex(i + 2, j)) elseif i - 1 >= 0 && charmat[i - 1, j] == '.' push!(letterDict[s], CartesianIndex(i - 1, j)) end end end return letterDict end function create_portal_lookup(letterDict::Dict{String,Array{CartesianIndex,1}}) lookup = Dict{CartesianIndex,CartesianIndex}() for (k, v) in letterDict (k == "AA" || k == "ZZ") && continue length(v) == 2 || throw(AssertionError("Too many indices for portal $k")) lookup[v[1]] = v[2] lookup[v[2]] = v[1] end return lookup end function flood!(imat::Array{Int,2}, portals::Dict{CartesianIndex,CartesianIndex}, start::CartesianIndex, finish::CartesianIndex) imat[start] = 0 queue = Array{CartesianIndex,1}() push!(queue, start) while length(queue) > 0 current = popfirst!(queue) if current == finish return imat[current] end for (k, l) in ((0, 1), (0, -1), (1, 0), (-1, 0)) if imat[(current.I .+ (k, l))...] == -1 p = CartesianIndex(current.I .+ (k, l)) imat[p] = imat[current] + 1 push!(queue, p) end end if haskey(portals, current) p = portals[current] if imat[p] == -1 imat[p] = imat[current] + 1 push!(queue, p) end end end end function is_outer(c::CartesianIndex, m::Int, n::Int) (c[1] == 3 || c[1] == m - 2) && return true (c[2] == 3 || c[2] == n - 2) && return true return false end function flood_levels(imat::Array{Int,2}, portals::Dict{CartesianIndex,CartesianIndex}, start::CartesianIndex, finish::CartesianIndex) maze = Dict{Int,Array{Int,2}}() maze[0] = copy(imat) maze[0][start] = 0 m, n = size(imat) queue = Array{Tuple{CartesianIndex,Int},1}() level = 0 push!(queue, (start, level)) while length(queue) > 0 current, level = popfirst!(queue) if level == 0 && current == finish return maze[level][current] end for (k, l) in ((0, 1), (0, -1), (1, 0), (-1, 0)) if maze[level][(current.I .+ (k, l))...] == -1 p = CartesianIndex(current.I .+ (k, l)) maze[level][p] = maze[level][current] + 1 push!(queue, (p, level)) end end if haskey(portals, current) if !is_outer(current, m, n) p = portals[current] if !haskey(maze, level + 1) maze[level + 1] = copy(imat) end if maze[level + 1][p] == -1 maze[level + 1][p] = maze[level][current] + 1 push!(queue, (p, level + 1)) end elseif level > 0 # only inner "portals" allowed for level 0 p = portals[current] if maze[level - 1][p] == -1 maze[level - 1][p] = maze[level][current] + 1 push!(queue, (p, level - 1)) end end end end end end # module
proofpile-julia0005-42525
{ "provenance": "014.jsonl.gz:242526" }
using DataFrames using Gadfly # Read the datasource include(Pkg.dir("BismarkSummary","src","bismark-report.jl")) #using BismarkSummary sampleinfo_path = joinpath(Pkg.dir(), "BismarkSummary","testdata","datasource.tsv") pipeline_name = nothing run_number = nothing # Get filenames of bismark reports test_bismark_report1 = joinpath(Pkg.dir(), "BismarkSummary","testdata","bismark_report.txt") test_bismark_report2 = joinpath(Pkg.dir(), "BismarkSummary","testdata","bismark_report1.txt") test_bismark_report3 = joinpath(Pkg.dir(), "BismarkSummary","testdata","bismark_report2.txt") bismark_report_filenames = [test_bismark_report1,test_bismark_report2,test_bismark_report3] bismark_report_filenames sampleinfo = readtable(sampleinfo_path) report_dict=parse_bismark_reports( bismark_report_filenames) methods(parse_bismark_reports) append_report_info_to_sampleinfo!(sampleinfo,report_dict) report_dict sampleinfo Gadfly.plot(sampleinfo,x="sex",y="Mapping efficiency", Geom.boxplot)
proofpile-julia0005-42526
{ "provenance": "014.jsonl.gz:242527" }
# function Crst_direct(r::Int, s::Int, t::Int) # # direct method to calculate Crst # # see Products of Laguerre Polynomials # # Joseph Gillis and George Weiss # # Mathematics of Computation, Vol. 14, No. 69 (Jan., 1960), pp. 60-63 # # this function implements equation (7) # # this is computationally expensive. # # use recurrence relation instead. # (r >= 0 && s >= 0 && t >= 0) || throw("negative orders not allowed.") # # t needs to be in |r-s| and r+s # # otherwise the coef is zero # if t < abs(r - s) || t > r + s # return 0 # end # p = r + s - t # # define nmax and nmin and find them # nmax = r # if s < nmax # nmax = s # end # if p < nmax # nmax = p # end # nmin = ceil(Int, p / 2) # # use rational numbers for now to keep it exact. # C = 0 // 1 # for n in nmin:nmax # C += (2 // 1)^(2 * n) * factorial(r + s - n) / ( factorial(r - n) * factorial(s - n) * factorial(2n - p) * factorial(p - n)) # end # # prefactor # C *= (-1 // 2)^p # end function Crst(r::Int, s::Int, t::Int) # this implements equation (22) and (23) in the same paper. if r < 0 || s < 0 || t < 0 return 0 // 1 end # (r >= 0 && s >= 0 && t >= 0) || throw("negative orders not allowed.") # notice that C_{rst} is symmetric with respect to any swapping of indices. # take r to be the larer one of r and s # the recurrence is given for t+1 # shift it to calculate for t; if r < s r, s = s, r # swap. end # t needs to be in |r-s| and r+s # otherwise the coef is zero if t < r - s || t > r + s return 0 // 1 end sigma = r + s + 1 // 1 delta = r - s if t == delta return Rational(binomial(r, s)) end # handle general case. f1 = t * (delta^2 - t^2) f2 = (2t - 1) * (delta^2 - (t - 1)^2 + t * (sigma - t )) f3 = -(t - 1) * (delta^2 - (t - 2)^2 + (4t - 3) * (sigma - t + 1)) f4 = 2(t - 1) * (t - 2) * (sigma - t + 2) return (f2 * Crst(r, s, t - 1) + f3 * Crst(r, s, t - 2) + f4 * Crst(r, s, t - 3) ) / f1 end function laprodexpand(r::Int, s::Int) # expand the product of two Laguerre polynomials (with coefficients being 1) into a linear # combination of Laguerre polynomials. # Lr(x)Ls(x) into sum_{t}C_{rst}Lt(x) orders = abs(r - s):(r + s) |> collect coeffs = [Crst(r, s, t) for t in orders] return orders, coeffs end function Base.:*(l1::LaguerrePolynomial{T}, l2::LaguerrePolynomial{S}) where {T,S} # take two linear combinations of Laguerre polynomials. # and reexpand into a single Laguerre polynomial series. lst = [] R = promote_type(T, S) for (r, c1) in l1 for (s, c2) in l2 # construct the product orders, coeffs = laprodexpand(r, s) # convert to type R coeffs = R.(coeffs) # add this to the list la = LaguerrePolynomial(orders, coeffs) la = la * c1 * c2 push!(lst, la) end end # add elements in the list. la = lst[1] if length(lst) > 1 for i = 2:length(lst) la += lst[i] end end return la end
proofpile-julia0005-42527
{ "provenance": "014.jsonl.gz:242528" }
using Flux: convfilter, Zeros, outdims # Build a VGG block # ifilters: number of input filters # ofilters: number of output filters # batchnorm: add batchnorm function vgg_block(ifilters, ofilters, depth, batchnorm) k = (3,3) p = (1,1) layers = [] for l in 1:depth if batchnorm w = convfilter(k, ifilters=>ofilters) b = Zeros() push!(layers, Conv(weight=w, bias=b, pad=p)) push!(layers, BatchNorm(ofilters, relu)) else push!(layers, Conv(k, ifilters=>ofilters, relu, pad=p)) end ifilters = ofilters end return layers end # Build convolutionnal layers # config: :A (vgg11) :B (vgg13) :D (vgg16) :E (vgg19) # inchannels: number of channels in input image (3 for RGB) function convolutional_layers(config, batchnorm, inchannels) layers = [] ifilters = inchannels for c in config push!(layers, vgg_block(ifilters, c..., batchnorm)...) push!(layers, MaxPool((2,2))) ifilters, _ = c end return layers end # Build classification layers # imsize: image size (w, h, c) # nclasses: number of classes # fcsize: size of fully connected layers (usefull for smaller nclasses than ImageNet) # dropout: dropout obviously function classifier_layers(imsize, nclasses, fcsize, dropout) layers = [] push!(layers, flatten) push!(layers, Dense(Int(prod(imsize)), fcsize, relu)) push!(layers, Dropout(dropout)) push!(layers, Dense(fcsize, fcsize, relu)) push!(layers, Dropout(dropout)) push!(layers, Dense(fcsize, nclasses)) push!(layers, softmax) return layers end function vgg(imsize; config, inchannels, batchnorm=false, nclasses, fcsize, dropout) conv = convolutional_layers(config, batchnorm, inchannels) imsize = foldl((insize, layer) -> outdims(layer, insize), conv; init = imsize) class = classifier_layers((imsize..., config[end][1]), nclasses, fcsize, dropout) return Chain(conv..., class...) end const configs = Dict(:A => [(64,1), (128,1), (256,2), (512,2), (512,2)], :B => [(64,2), (128,2), (256,2), (512,2), (512,2)], :D => [(64,2), (128,2), (256,3), (512,3), (512,3)], :E => [(64,2), (128,2), (256,4), (512,4), (512,4)]) vgg11(imsize; inchannels=3, nclasses=1000, fcsize=4096, dropout=0.5) = vgg(imsize, config=configs[:A], inchannels=inchannels, nclasses=nclasses, fcsize=fcsize, dropout=dropout) vgg11bn(imsize; inchannels=3, nclasses=1000, fcsize=4096, dropout=0.5) = vgg(imsize, config=configs[:A], batchnorm=true, inchannels=inchannels, nclasses=nclasses, fcsize=fcsize, dropout=dropout) vgg13(imsize; inchannels=3, nclasses=1000, fcsize=4096, dropout=0.5) = vgg(imsize, config=configs[:B], inchannels=inchannels, nclasses=nclasses, fcsize=fcsize, dropout=dropout) vgg13bn(imsize; inchannels=3, nclasses=1000, fcsize=4096, dropout=0.5) = vgg(imsize, config=configs[:B], batchnorm=true, inchannels=inchannels, nclasses=nclasses, fcsize=fcsize, dropout=dropout) vgg16(imsize; inchannels=3, nclasses=1000, fcsize=4096, dropout=0.5) = vgg(imsize, config=configs[:D], inchannels=inchannels, nclasses=nclasses, fcsize=fcsize, dropout=dropout) vgg16bn(imsize; inchannels=3, nclasses=1000, fcsize=4096, dropout=0.5) = vgg(imsize, config=configs[:D], batchnorm=true, inchannels=inchannels, nclasses=nclasses, fcsize=fcsize, dropout=dropout) vgg19(imsize; inchannels=3, nclasses=1000, fcsize=4096, dropout=0.5) = vgg(imsize, config=configs[:E], inchannels=inchannels, nclasses=nclasses, fcsize=fcsize, dropout=dropout) vgg19bn(imsize; inchannels=3, nclasses=1000, fcsize=4096, dropout=0.5) = vgg(imsize, config=configs[:E], batchnorm=true, inchannels=inchannels, nclasses=nclasses, fcsize=fcsize, dropout=dropout)
proofpile-julia0005-42528
{ "provenance": "014.jsonl.gz:242529" }
################################################################################ # CutPruners # A package to manage polyhedral convex functions ################################################################################ module CutPruners using LinearAlgebra, SparseArrays using JuMP # Redudancy checking include("redund.jl") include("abstract.jl") include("avg.jl") include("decay.jl") include("dematos.jl") include("exact.jl") end # module
proofpile-julia0005-42529
{ "provenance": "014.jsonl.gz:242530" }
using DrWatson @quickactivate "FractalDimension" include(srcdir("style.jl")) using PyPlot, DataFrames, CSVFiles # %% computation times for different lengths data = wload(datadir("benchmark", "benchmark_number_NofN=10_base=10_lowerN=3_upperN=5.csv")) |> DataFrame fig, axs = subplots(2,1; sharex = true, figsize = (10, 10)) for (i, name) in enumerate(unique(data.Method)) color = "C$(i-1)" lorenz_data = data[(data.Model .== "lorenz") .& (data.Method .== name), :] axs[1].plot(lorenz_data.N, lorenz_data.Time, label = name, color = color) hénon_data = data[(data.Model .== "henon") .& (data.Method .== name), :] axs[2].plot(hénon_data.N, hénon_data.Time, color = color) end axs[2].set_xlabel("\$N\$") axs[2].set_ylabel("\$t_{Hénon}[\\mathrm{ns}]\$") axs[1].set_ylabel("\$t_{Lorenz63}[\\mathrm{ns}]\$") axs[1].set_yscale("log") axs[2].set_yscale("log") axs[1].set_xscale("log") axs[2].set_xscale("log") for ax in axs; ax.legend(loc = "upper left"); ax.grid(); end axs[1].tick_params(labelbottom=false) axs[1].set_title("minimum computation time") wsave(plotsdir("benchmarks", "comparing_btime_N.png"), fig) # %% computation times for different system dimensions data = wload(datadir("benchmark", "benchmark_dim_N=10000_ddim=1_lowerdim=4_upperdim=16.csv")) |> DataFrame fig, axs = subplots(1,1; sharex = true, figsize = (10, 16)) for (i, method) in enumerate(unique(data.Method)) color = "C$(i-1)" x = data[data.Method .== method, :Dimension] y = data[data.Method .== method, :Time] axs.plot(x, y, color = color, label = method) end axs.set_xlabel("\$\\mathrm{Dimension}\$") axs.set_ylabel("\$t [\\mathrm{ns}]\$") axs.set_yscale("log") axs.legend(loc = "upper left") axs.grid() axs.set_title("minimum computation time (N=10000)") wsave(plotsdir("benchmarks", "comparing_btime_dim.png"), fig) # %% comparison of computation times for length and dimensionality path1 = "benchmark_dim_N=50000_ddim=1_lowerdim=4_upperdim=16.csv" path2 = "benchmark_number_NofN=10_base=10_lowerN=3_upperN=5.csv" titlename = "\$ \\mathrm{Computation}\\;\\mathrm{Time}\\;\\mathrm{for}\\;\\mathrm{Calculation}\\;\\mathrm{of}\\;\\mathrm{Probabilities} \$" labels = [ "\$ C_2^\\mathrm{classic} \$", "\$ C_2^\\mathrm{tree} \$", "\$ C_2^\\mathrm{box} \$", "\$ C_2^\\mathrm{prism} \$", "\$ H_1^\\mathrm{Molteno} \$", "\$ H_1^\\mathrm{classic} \$", ] function plot_dim_length(title, labels, path1, path2; save_figure = true) data_dim = wload( datadir( "benchmark", path1, )) |> DataFrame data_var = wload( datadir( "benchmark", path2, )) |> DataFrame data_length = data_var[(data_var.Model .== "lorenz"), :] fig, axs = subplots(2,1; sharex = false) c_names = Dict() ls_names = Dict() agents = [] for (i, method) in enumerate(unique(data_dim.Method)) color = "C$(i-1)" ls = LINESTYLES[i] c_names[method] = color ls_names[method] = ls x = data_dim[data_dim.Method .== method, :Dimension] y = data_dim[data_dim.Method .== method, :Time] agent, = axs[1].plot(x, y, color = color, label = method, ls = ls) push!(agents, agent) end for method in unique(data_length.Method) if method == "Correlation" color = c_names["Classic Correlation"] ls = ls_names["Classic Correlation"] elseif method == "Generalized Dimension" color = c_names["Generalized Entropy"] ls = ls_names["Generalized Entropy"] else color = c_names[method] ls = ls_names[method] end x = data_length[data_length.Method .== method, :N] y = data_length[data_length.Method .== method, :Time] axs[2].plot(x, y, color = color, label = nothing, ls = ls) end for ax in axs; ax.set_yscale("log"); ax.grid(true); end axs[1].set_xlabel("\$ \\mathrm{Dimension} \$") axs[1].set_xticks(4:4:16) axs[1].set_xlim((4,16)) axs[1].set_title("\$ \\mathrm{Lorenz-96} \\quad N=50000 \$") axs[1].set_ylabel("\$t [\\mathrm{ns}]\$") axs[1].set_yticks(10 .^ (7:12)) leg = axs[1].legend( handles = agents, labels = labels, bbox_to_anchor=(0., 1.25, 1., .102), loc="lower left", ncol=3, mode="expand", borderaxespad=0, handlelength=2, title = title, ) axs[2].set_xlabel("\$\\mathrm{N}\$") axs[2].set_yticks(10 .^ (5:2:12)) axs[2].set_xlim((10^3, 10^5)) axs[2].set_xscale("log") axs[2].set_title("\$ \\mathrm{Lorenz-63} \$") #axs[2].legend().remove() axs[2].set_ylabel("\$t [\\mathrm{ns}]\$") axs[1].add_artist(leg) fig.tight_layout() fig.subplots_adjust(top = 1.0, hspace = 0.5, left = 0.2) fig end fig = plot_dim_length(title, labels, path1, path2) fig.tight_layout(;pad = 0.3) wsave(plotsdir("benchmarks", "comparing_btime_dim_N.png"), fig)
proofpile-julia0005-42530
{ "provenance": "014.jsonl.gz:242531" }
using FSM using CSV using DataFrames using Plots data_force = CSV.File("data/met_CdP_0506.csv") |> DataFrame data_ref = CSV.File("fortran/output/out_CdP_0506_11111.txt", header=["year", "month", "day", "hour", "alb", "Roff", "snowdepth", "SWE", "Tsurf", "Tsoil"], delim=" ", ignorerepeated=true) |> DataFrame input = Input{Float64}( data_force.year, data_force.month, data_force.day, data_force.hour, data_force.SW, data_force.LW, data_force.Sf, data_force.Rf, data_force.Ta, data_force.RH, data_force.Ua, data_force.Ps, ) ebm = EBM{Float64}( am=1, cm=1, dm=1, em=1, hm=1, zT=1.5, zvar=false, Tsoil=[282.98, 284.17, 284.70, 284.70] ) cn = Constants{Float64}() snowdepth = similar(input.Ta) SWE = similar(input.Ta) Tsurf = similar(input.Ta) run!(ebm, cn, snowdepth, SWE, Tsurf, input) plot(data_ref.SWE - SWE) plot(data_ref.Tsurf - Tsurf .+ 273.15)
proofpile-julia0005-42531
{ "provenance": "014.jsonl.gz:242532" }
if !("." in LOAD_PATH) push!(LOAD_PATH, ".") end import Coverage import Plots # https://github.com/jheinen/GR.jl/issues/278#issuecomment-587090846 ENV["GKSwstype"] = "nul" all_cases = [ # "ARM_SGP", # "Bomex", # "DryBubble", # "DYCOMS_RF01", # "GABLS", # "GATE_III", # "life_cycle_Tan2018", # "Nieuwstadt", "Rico", # "Soares", # "SP", "TRMM_LBA", "LES_driven_SCM", ] filter!(x -> x ≠ "GATE_III", all_cases) # no mse tables for GATE_III filter!(x -> x ≠ "SP", all_cases) # not currently running SP allocs = Dict() for case in all_cases ENV["ALLOCATION_CASE_NAME"] = case run(`julia --project=test/ --track-allocation=user perf/alloc_per_case.jl`) allocs[case] = Coverage.analyze_malloc(".") # Clean up files all_files = [joinpath(root, f) for (root, dirs, files) in Base.Filesystem.walkdir(".") for f in files] all_mem_files = filter(x -> endswith(x, ".mem"), all_files) for f in all_mem_files rm(f) end end @info "Post-processing allocations" function plot_allocs(case_name, allocs_per_case, n_unique_bytes) p = Plots.plot() @info "Allocations for $case_name" filename_only(fn) = first(split(fn, ".jl")) * ".jl" function compile_tc(fn, linenumber) c1 = endswith(filename_only(fn), "TurbulenceConvection.jl") c2 = linenumber == 1 return c1 && c2 end filter!(x -> x.bytes ≠ 0, allocs_per_case) filter!(x -> !compile_tc(x.filename, x.linenumber), allocs_per_case) for alloc in allocs_per_case println(alloc) end println("Number of allocating sites: $(length(allocs_per_case))") case_bytes = getproperty.(allocs_per_case, :bytes)[end:-1:1] case_filename = getproperty.(allocs_per_case, :filename)[end:-1:1] case_linenumber = getproperty.(allocs_per_case, :linenumber)[end:-1:1] all_bytes = Int[] filenames = String[] linenumbers = Int[] loc_ids = String[] for (bytes, filename, linenumber) in zip(case_bytes, case_filename, case_linenumber) compile_tc(filename, linenumber) && continue # Skip loading module loc_id = "$(filename_only(filename))" * "$linenumber" if !(bytes in all_bytes) && !(loc_id in loc_ids) push!(all_bytes, bytes) push!(filenames, filename) push!(linenumbers, linenumber) push!(loc_ids, loc_id) if length(all_bytes) ≥ n_unique_bytes break end end end all_bytes = all_bytes ./ 10^3 max_bytes = maximum(all_bytes) @info "$case_name: $all_bytes" xtick_name(filename, linenumber) = "$filename, line number: $linenumber" markershape = (:square, :hexagon, :circle, :star, :utriangle, :dtriangle) for (bytes, filename, linenumber) in zip(all_bytes, filenames, linenumbers) Plots.plot!( [0], [bytes]; seriestype = :scatter, label = xtick_name(filename_only(filename), linenumber), markershape = markershape[1], markersize = 1 + bytes / max_bytes * 10, ) markershape = (markershape[end], markershape[1:(end - 1)]...) end p1 = Plots.plot!(ylabel = "Allocations (KB)", title = case_name) p2 = Plots.plot( 1:length(allocs_per_case), getproperty.(allocs_per_case, :bytes)[end:-1:1] ./ 1000; xlabel = "i-th allocating line (sorted)", ylabel = "Allocations (KB)", markershape = :circle, ) Plots.plot(p1, p2, layout = Plots.grid(2, 1)) Plots.savefig(joinpath(folder, "allocations_$case_name.png")) end folder = "perf/allocations_output" mkpath(folder) @info "Allocated bytes for single tendency per case:" for case in all_cases plot_allocs(case, allocs[case], 10) end
proofpile-julia0005-42532
{ "provenance": "014.jsonl.gz:242533" }
""" Rimu.EmbarrassinglyDistributed Module that provides an embarrassingly parallel option for breaking up long time-series with `lomc!()` into chunks performed in parallel using the `Distributed` package. ### Exports: * [`d_lomc!()`](@ref) - run [`lomc!()`](@ref) in embarrassingly parallel mode * [`combine_dfs()`](@ref) - combine the resulting `DataFrame`s to a single one * [`setup_workers()`](@ref) - set up workers for distributed computing * [`seedCRNGs_workers!()`](@ref) - seed random number generators for distributed computing """ module EmbarrassinglyDistributed using Random, Parameters, DataFrames using Rimu, Rimu.ConsistentRNG using Distributed export d_lomc!, setup_workers, seedCRNGs_workers!, combine_dfs """ seedCRNGs_workers!([seed]) Seed the random number generators `CRNG` from [`ConsistentRNG`](@ref) on all available processes in a `Distributed` environment deterministically from `seed` but such that their pseudo-random number sequences are statistically independent. If no `seed` is given, obtain one from system entropy (with [`Random.RandomDevice()`](@ref)). """ function seedCRNGs_workers!(seed=rand(Random.RandomDevice(),UInt)) @everywhere seedCRNG!($seed + hash(myid())) end """ d_lomc!(ham, v; eqsteps, kwargs...) -> (; dfs = DataFrame[], eqsteps) Perform linear operator Monte Carlo with [`lomc!()`](@ref) in embarrassingly parallel mode using `Distributed` computing. Returns all dataframes. ### Keyword arguments in addition to those of [`lomc!()`](@ref): * `eqsteps` - Number of time steps used for equilibration. Each worker will run an independent simulation with `eqstep + (laststep - step) ÷ nworkers()` time steps. ### Example: ```julia using Rimu, Rimu.EmbarrassinglyDistributed setup_workers(4) # set up to run on 4 workers seedCRNGs_workers!(127) # seed random number generators for deterministic evolution add = BoseFS((1,1,0,1)) ham = HubbardReal1D(add, u=4.0) v = DVec(add => 2, capacity = 200) # run `lomc!()` for 20_100 time steps by # performing 4 parallel runs of `lomc!()` with 5_100 time steps each and # stiching the results together into a single dataframe: df, eqsteps = d_lomc!(ham, v; eqsteps = 100, laststep = 20_100) |> combine_dfs # or energies = d_lomc!(ham, v; eqsteps = 100, laststep = 20_100) |> combine_dfs |> autoblock ``` ### See also: * [`setup_workers()`](@ref) * [`seedCRNGs_workers!()`](@ref) * [`combine_dfs()`](@ref) """ function d_lomc!(ham, v; eqsteps, laststep = nothing, params::Rimu.FciqmcRunStrategy = Rimu.RunTillLastStep(), kwargs... ) nw = nworkers() nw < 2 && @warn "Not enough workers available for parallel execution" nw if !isnothing(laststep) params.laststep = laststep end # unpack the parameters: @unpack step, laststep = params @assert laststep - step - eqsteps > nw "not enough time steps to run for" psteps = laststep - step - eqsteps # steps to be run after equilibration stepseach = psteps ÷ nw # to be run on each worker after equilibration # @everywhere do_it() = Rimu.lomc!($ham, sizehint!($v,($vc*3)>>1); $kwargs..., laststep = $step+$stepseach, params = $params, threading = false).df # start shorter jobs in parallel # futures = [@spawnat(p, Main.do_it()) for p in workers()] futures = [@spawnat(p, Rimu.lomc!(ham, v; kwargs..., laststep = step+eqsteps+stepseach, params = params, threading = false).df) for p in workers()] # futures = [@spawnat(p, Rimu.lomc!(ham, v; kwargs..., laststep = step+stepseach, params = params, threading = false).df) for p in workers()] dfs = fetch.(futures) # will now be an array of dataframes return (; dfs, eqsteps) # returns NamedTuple end """ combine_dfs(dfs::AbstractVector, eqsteps) combine_dfs((dfs, eqsteps)) Return a dataframe with compounded data from the parallel runs assuming that after `eqsteps` time steps the runs are equilibrated and uncorrelated. """ combine_dfs(tuple) = combine_dfs(tuple...) # for easy chaining function combine_dfs(dfs::AbstractVector, eqsteps) # add worker id to dfs for i in eachindex(dfs) df = dfs[i] df.workerid = [workers()[i] for n in 1:size(df)[1]] df.stepsorg = copy(df.steps) # remember original time step end # check that the dataframes are all the same size: @assert mapreduce(isequal(size(dfs[1])), &, size.(dfs)) # last time step recorded in the first dataframe s = dfs[1].steps[end] # create views of all the remaining dataframes starting after the eqsteps lelem = size(dfs[1])[1] df_adds = [view(dfs[i], (eqsteps+2):lelem, :) for i in 2:length(dfs)] # now number the time steps in the views consecutively for df in df_adds df[:,:steps] .= [s+i for i in 1:length(df.steps)] s = df.steps[end] end dfm = vcat(dfs[1],df_adds...) return (; df=dfm, eqsteps) end # d_lomc!() """ setup_workers([nw]) Set up and prepare `nw` workers for distributed computing. If `nw` is not given, but multiple threads are available then as many workers will be prepared. The `Rimu` package code will be made available on all workers. """ function setup_workers(nw = nothing) # organise the right number of workers if isnothing(nw) # if `nw` is not specified, use at least as many workers are threads are # available while Threads.nthreads() > nworkers() addprocs(1) end nw = nworkers() else while nw > nworkers() addprocs(1) end end @assert nw ≥ 1 "not enough workers to run in parallel" while nworkers() > nw # reduce the number of workers if it is larger than `nw` rmprocs(workers()[end]) end # just to check that we have the right number of workers now: @assert nw == nworkers() @eval @everywhere using Rimu # load code on all walkers return nw end # function __init__() # if myid() == 1 # nw = setup_workers() # @info "`REmbarrassinglyDistributed`: $nw workers set up and ready to go" # end # end end # module
proofpile-julia0005-42533
{ "provenance": "014.jsonl.gz:242534" }
Base.one(::Type{P}) where {C, T, P <: Polynomial{C, T}} = Polynomial(one(T)) Base.one(p::Polynomial) = one(typeof(p)) Base.zero(::Type{Polynomial{C, T, A}}) where {C, T, A} = Polynomial(A()) Base.zero(t::PolynomialLike) = zero(typeof(t)) combine(t1::Term, t2::Term) = combine(promote(t1, t2)...) combine(t1::T, t2::T) where {T <: Term} = Term(t1.coefficient + t2.coefficient, t1.monomial) compare(t1::Term, t2::Term) = monomial(t1) > monomial(t2) # Graded Lexicographic order # First compare total degree, then lexicographic order function isless(m1::Monomial{V}, m2::Monomial{V}) where {V} d1 = degree(m1) d2 = degree(m2) if d1 < d2 return true elseif d1 > d2 return false else return exponents(m1) < exponents(m2) end end jointerms(terms1::AbstractArray{<:Term}, terms2::AbstractArray{<:Term}) = mergesorted(terms1, terms2, compare, combine) (+)(p1::Polynomial, p2::Polynomial) = Polynomial(jointerms(terms(p1), terms(p2))) (-)(p1::Polynomial, p2::Polynomial) = Polynomial(jointerms(terms(p1), (-).(terms(p2)))) (==)(::Variable{N}, ::Variable{N}) where {N} = true (==)(::Variable, ::Variable) = false (==)(m1::Monomial{V}, m2::Monomial{V}) where {V} = exponents(m1) == exponents(m2) # Multiplication is handled as a special case so that we can write these # definitions without resorting to promotion: MP.multconstant(α, v::Monomial) = Term(α, v) MP.multconstant(α, v::Variable) = Term(α, Monomial(v)) (*)(v1::V, v2::V) where {V <: Variable} = Monomial{(V(),), 1}((2,)) (*)(v1::Variable, v2::Variable) = (*)(promote(v1, v2)...) function MP.divides(m1::Monomial{V, N}, m2::Monomial{V, N}) where {V, N} reduce((d, exp) -> d && (exp[1] <= exp[2]), zip(m1.exponents, m2.exponents), init=true) end MP.divides(m1::Monomial, m2::Monomial) = divides(promote(m1, m2)...) function MP.mapexponents(op, m1::M, m2::M) where M<:Monomial M(map(op, m1.exponents, m2.exponents)) end MP.mapexponents(op, m1::Monomial, m2::Monomial) = mapexponents(op, promote(m1, m2)...) # TODO: this could be faster with an in-place summation function (*)(p1::Polynomial{S}, p2::Polynomial{T}) where {S, T} C = Base.promote_op(*, S, T) M = promote_type(monomialtype(p1), monomialtype(p2)) result = Polynomial(termtype(M, C)[]) for t1 in terms(p1) for t2 in terms(p2) result += t1 * t2 end end result end ^(v::V, x::Integer) where {V <: Variable} = Monomial{(V(),), 1}((x,)) # dot(v1::AbstractVector{<:TermLike}, v2::AbstractVector) = dot(v1, v2) # dot(v1::AbstractVector, v2::AbstractVector{<:TermLike}) = dot(v1, v2) # dot(v1::AbstractVector{<:TermLike}, v2::AbstractVector{<:TermLike}) = dot(v1, v2) # All of these types are immutable, so there's no need to copy anything to get # a shallow copy. Base.copy(x::TermLike) = x Base.copy(p::Polynomial) = Polynomial(copy(terms(p))) adjoint(v::Variable) = v adjoint(m::Monomial) = m adjoint(t::Term) = Term(adjoint(coefficient(t)), monomial(t)) adjoint(x::Polynomial) = Polynomial(adjoint.(terms(x)))
proofpile-julia0005-42534
{ "provenance": "014.jsonl.gz:242535" }
using LinearAlgebra: tril!, triu! function batched_tril!(A::CuArray{T, N}, d) where {T, N} if N < 2 error("MethodError: no method matching tril!(::Array{Float64,1})") elseif N == 2 return tril!(x, d) else s = size(A) m, n = s[1], s[2] l = m*n bs = Int(length(A) // l) function batch_tril_kernel!(_A, _d) li = (blockIdx().x - 1) * blockDim().x + threadIdx().x b = (blockIdx().y - 1) * blockDim().y + threadIdx().y @inbounds if 0 < li <= l && b <= bs id = Tuple(CartesianIndices(_A)[Base._to_linear_index(_A, mod1(li, m), fld1(li, m), b)]) i, j = id if i < j - _d _A[id...] = 0 end end return nothing end max_threads = 256 thread_x = min(max_threads, l) thread_y = min(max_threads ÷ thread_x, bs) threads = (thread_x, thread_y) blocks = ceil.(Int, (l, bs) ./ threads) @cuda threads=threads blocks=blocks batch_tril_kernel!(A, d) return A end end function batched_triu!(A::CuArray{T, N}, d) where {T, N} if N < 2 error("MethodError: no method matching triu!(::Array{Float64,1})") elseif N == 2 return tril!(x, d) else s = size(A) m, n = s[1], s[2] l = m*n bs = Int(length(A) // l) function batch_triu_kernel!(_A, _d) li = (blockIdx().x - 1) * blockDim().x + threadIdx().x b = (blockIdx().y - 1) * blockDim().y + threadIdx().y @inbounds if 0 < li <= l && b <= bs id = Tuple(CartesianIndices(_A)[Base._to_linear_index(_A, mod1(li, m), fld1(li, m), b)]) i, j = id if j < i + _d _A[id...] = 0 end end return nothing end max_threads = 256 thread_x = min(max_threads, l) thread_y = min(max_threads ÷ thread_x, bs) threads = (thread_x, thread_y) blocks = ceil.(Int, (l, bs) ./ threads) @cuda threads=threads blocks=blocks batch_triu_kernel!(A, d) return A end end
proofpile-julia0005-42535
{ "provenance": "014.jsonl.gz:242536" }
const SMALL_SIGNATURES = get(ENV, "PBC_SMALL_SIGNATURES", "n") == "y" const SMALL_IDENTITIES = get(ENV, "PBC_SMALL_IDENTITIES", "y") == "y" const NPROCS = get(ENV, "PBC_NPROCS", "") == "auto" ? Sys.CPU_THREADS : parse(Int, get(ENV, "PBC_NPROCS", "1")) const BATCH_SIZE = Threads.nthreads() * parse(Int, get(ENV, "PBC_BATCH_SCALE_FACTOR", "1024")) macro EP() return SMALL_SIGNATURES ? :(Curve.EP) : :(Curve.EP2) end macro EP2() return SMALL_SIGNATURES ? :(Curve.EP2) : :(Curve.EP) end macro ID() return SMALL_IDENTITIES ? :(Int64) : :(Int128) end const G1 = Curve.curve_gen(@EP) const G2 = Curve.curve_gen(@EP2) const PUBLIC_KEY_SIZE = sizeof(G2.x) const SIGNATURE_SIZE = sizeof(G1.x) const PRIME = Curve.fp_prime_get() const ORDER = Curve.curve_order(@EP) # Effective number of bits required to store the private key const PRIVATE_KEY_SIZE_BITS = ceil(Int, log2(BigInt(ORDER))) # Effective number of bytes required to store the private key const PRIVATE_KEY_SIZE = ceil(Int, PRIVATE_KEY_SIZE_BITS // 8) # whether or not we have bits over for encoding LSB(y) const CAN_STUFF_Y = ceil(Int, log2(BigInt(PRIME))) < (8 * Curve.FP_ST_SIZE)
proofpile-julia0005-42536
{ "provenance": "014.jsonl.gz:242537" }
int_rules_1_1_1_2 = @theory begin #= ::Subsection::Closed:: =# #= 1.1.1.2*(a+b*x)^m*(c+d*x)^n =# @apply_utils Antiderivative((~a + ~(b') * ~x) ^ ~(m') * (~c + ~(d') * ~x), ~x) => (~d * ~x * (~a + ~b * ~x) ^ (~m + 1)) / (~b * (~m + 2)) <-- FreeQ([~a, ~b, ~c, ~d, ~m], ~x) && EqQ(~a * ~d - ~b * ~c * (~m + 2), 0) @apply_utils Antiderivative(1 / ((~a + ~(b') * ~x) * (~c + ~(d') * ~x)), ~x) => Antiderivative(1 / (~a * ~c + ~b * ~d * (~x) ^ 2), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && EqQ(~b * ~c + ~a * ~d, 0) @apply_utils Antiderivative(1 / ((~(a') + ~(b') * ~x) * (~(c') + ~(d') * ~x)), ~x) => (~b / (~b * ~c - ~a * ~d)) * Antiderivative(1 / (~a + ~b * ~x), ~x) - (~d / (~b * ~c - ~a * ~d)) * Antiderivative(1 / (~c + ~d * ~x), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && NeQ(~b * ~c - ~a * ~d, 0) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~(m') * (~(c') + ~(d') * ~x) ^ ~n, ~x) => ((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ (~n + 1)) / ((~b * ~c - ~a * ~d) * (~m + 1)) <-- FreeQ([~a, ~b, ~c, ~d, ~m, ~n], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (EqQ(~m + ~n + 2, 0) && NeQ(~m, -1))) @apply_utils Antiderivative((~a + ~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~m, ~x) => (~x * (~a + ~b * ~x) ^ ~m * (~c + ~d * ~x) ^ ~m) / (2 * ~m + 1) + ((2 * ~a * ~c * ~m) / (2 * ~m + 1)) * Antiderivative((~a + ~b * ~x) ^ (~m - 1) * (~c + ~d * ~x) ^ (~m - 1), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (EqQ(~b * ~c + ~a * ~d, 0) && IGtQ(~m + 1 / 2, 0)) @apply_utils Antiderivative(1 / ((~a + ~(b') * ~x) ^ (3 / 2) * (~c + ~(d') * ~x) ^ (3 / 2)), ~x) => ~x / (~a * ~c * sqrt(~a + ~b * ~x) * sqrt(~c + ~d * ~x)) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && EqQ(~b * ~c + ~a * ~d, 0) @apply_utils Antiderivative((~a + ~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~m, ~x) => (-(~x) * (~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ (~m + 1)) / (2 * ~a * ~c * (~m + 1)) + ((2 * ~m + 3) / (2 * ~a * ~c * (~m + 1))) * Antiderivative((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ (~m + 1), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (EqQ(~b * ~c + ~a * ~d, 0) && ILtQ(~m + 3 / 2, 0)) @apply_utils Antiderivative((~a + ~(b') * ~x) ^ ~(m') * (~c + ~(d') * ~x) ^ ~(m'), ~x) => Antiderivative((~a * ~c + ~b * ~d * (~x) ^ 2) ^ ~m, ~x) <-- FreeQ([~a, ~b, ~c, ~d, ~m], ~x) && (EqQ(~b * ~c + ~a * ~d, 0) && (IntegerQ(~m) || GtQ(~a, 0) && GtQ(~c, 0))) @apply_utils Antiderivative((~a + ~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~m, ~x) => (((~a + ~b * ~x) ^ FracPart(~m) * (~c + ~d * ~x) ^ FracPart(~m)) / (~a * ~c + ~b * ~d * (~x) ^ 2) ^ FracPart(~m)) * Antiderivative((~a * ~c + ~b * ~d * (~x) ^ 2) ^ ~m, ~x) <-- FreeQ([~a, ~b, ~c, ~d, ~m], ~x) && (EqQ(~b * ~c + ~a * ~d, 0) && Not(IntegerQ(2 * ~m))) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~m * (~(c') + ~(d') * ~x) ^ ~n, ~x) => ((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ ~n) / (~b * (~m + 1)) - ((~d * ~n) / (~b * (~m + 1))) * Antiderivative((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ (~n - 1), ~x) <-- FreeQ([~a, ~b, ~c, ~d, ~n], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (ILtQ(~m, -1) && (Not(IntegerQ(~n)) && GtQ(~n, 0)))) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~m * (~(c') + ~(d') * ~x) ^ ~n, ~x) => ((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ (~n + 1)) / ((~b * ~c - ~a * ~d) * (~m + 1)) - ((~d * (~m + ~n + 2)) / ((~b * ~c - ~a * ~d) * (~m + 1))) * Antiderivative((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ ~n, ~x) <-- FreeQ([~a, ~b, ~c, ~d, ~n], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (ILtQ(~m, -1) && (Not(IntegerQ(~n)) && LtQ(~n, 0)))) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~(m') * (~(c') + ~(d') * ~x) ^ ~(n'), ~x) => Antiderivative(ExpandIntegrand((~a + ~b * ~x) ^ ~m * (~c + ~d * ~x) ^ ~n, ~x), ~x) <-- FreeQ([~a, ~b, ~c, ~d, ~n], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (IGtQ(~m, 0) && (Not(IntegerQ(~n)) || (EqQ(~c, 0) && LeQ(7 * ~m + 4 * ~n + 4, 0) || (LtQ(9 * ~m + 5 * (~n + 1), 0) || GtQ(~m + ~n + 2, 0)))))) @apply_utils Antiderivative((~a + ~(b') * ~x) ^ ~m * (~(c') + ~(d') * ~x) ^ ~(n'), ~x) => Antiderivative(ExpandIntegrand((~a + ~b * ~x) ^ ~m * (~c + ~d * ~x) ^ ~n, ~x), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (ILtQ(~m, 0) && (IntegerQ(~n) && Not(IGtQ(~n, 0) && LtQ(~m + ~n + 2, 0))))) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~m * (~(c') + ~(d') * ~x) ^ ~n, ~x) => ((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ (~n + 1)) / ((~b * ~c - ~a * ~d) * (~m + 1)) - ((~d * Simplify(~m + ~n + 2)) / ((~b * ~c - ~a * ~d) * (~m + 1))) * Antiderivative((~a + ~b * ~x) ^ Simplify(~m + 1) * (~c + ~d * ~x) ^ ~n, ~x) <-- FreeQ([~a, ~b, ~c, ~d, ~m, ~n], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (ILtQ(Simplify(~m + ~n + 2), 0) && (NeQ(~m, -1) && (Not(LtQ(~m, -1) && (LtQ(~n, -1) && (EqQ(~a, 0) || NeQ(~c, 0) && (LtQ(~m - ~n, 0) && IntegerQ(~n))))) && (SumSimplerQ(~m, 1) || Not(SumSimplerQ(~n, 1))))))) @apply_utils Antiderivative(1 / ((~a + ~(b') * ~x) ^ (9 / 4) * (~c + ~(d') * ~x) ^ (1 / 4)), ~x) => -4 / (5 * ~b * (~a + ~b * ~x) ^ (5 / 4) * (~c + ~d * ~x) ^ (1 / 4)) - (~d / (5 * ~b)) * Antiderivative(1 / ((~a + ~b * ~x) ^ (5 / 4) * (~c + ~d * ~x) ^ (5 / 4)), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (EqQ(~b * ~c + ~a * ~d, 0) && NegQ((~a) ^ 2 * (~b) ^ 2)) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~m * (~(c') + ~(d') * ~x) ^ ~n, ~x) => ((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ ~n) / (~b * (~m + 1)) - ((~d * ~n) / (~b * (~m + 1))) * Antiderivative((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ (~n - 1), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (GtQ(~n, 0) && (LtQ(~m, -1) && (Not(IntegerQ(~n) && Not(IntegerQ(~m))) && (Not(ILeQ(~m + ~n + 2, 0) && (FractionQ(~m) || GeQ(2 * ~n + ~m + 1, 0))) && IntLinearQ(~a, ~b, ~c, ~d, ~m, ~n, ~x)))))) @apply_utils Antiderivative(1 / ((~a + ~(b') * ~x) ^ (5 / 4) * (~c + ~(d') * ~x) ^ (1 / 4)), ~x) => -2 / (~b * (~a + ~b * ~x) ^ (1 / 4) * (~c + ~d * ~x) ^ (1 / 4)) + ~c * Antiderivative(1 / ((~a + ~b * ~x) ^ (5 / 4) * (~c + ~d * ~x) ^ (5 / 4)), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (EqQ(~b * ~c + ~a * ~d, 0) && NegQ((~a) ^ 2 * (~b) ^ 2)) @apply_utils Antiderivative((~a + ~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~n, ~x) => ((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ ~n) / (~b * (~m + ~n + 1)) + ((2 * ~c * ~n) / (~m + ~n + 1)) * Antiderivative((~a + ~b * ~x) ^ ~m * (~c + ~d * ~x) ^ (~n - 1), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (EqQ(~b * ~c + ~a * ~d, 0) && (IGtQ(~m + 1 / 2, 0) && (IGtQ(~n + 1 / 2, 0) && LtQ(~m, ~n)))) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~m * (~(c') + ~(d') * ~x) ^ ~n, ~x) => ((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ ~n) / (~b * (~m + ~n + 1)) + ((~n * (~b * ~c - ~a * ~d)) / (~b * (~m + ~n + 1))) * Antiderivative((~a + ~b * ~x) ^ ~m * (~c + ~d * ~x) ^ (~n - 1), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (GtQ(~n, 0) && (NeQ(~m + ~n + 1, 0) && (Not(IGtQ(~m, 0) && (Not(IntegerQ(~n)) || GtQ(~m, 0) && LtQ(~m - ~n, 0))) && (Not(ILtQ(~m + ~n + 2, 0)) && IntLinearQ(~a, ~b, ~c, ~d, ~m, ~n, ~x)))))) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~m * (~(c') + ~(d') * ~x) ^ ~n, ~x) => ((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ (~n + 1)) / ((~b * ~c - ~a * ~d) * (~m + 1)) - ((~d * (~m + ~n + 2)) / ((~b * ~c - ~a * ~d) * (~m + 1))) * Antiderivative((~a + ~b * ~x) ^ (~m + 1) * (~c + ~d * ~x) ^ ~n, ~x) <-- FreeQ([~a, ~b, ~c, ~d, ~n], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (LtQ(~m, -1) && (Not(LtQ(~n, -1) && (EqQ(~a, 0) || NeQ(~c, 0) && (LtQ(~m - ~n, 0) && IntegerQ(~n)))) && IntLinearQ(~a, ~b, ~c, ~d, ~m, ~n, ~x)))) @apply_utils Antiderivative(1 / (sqrt(~a + ~(b') * ~x) * sqrt(~c + ~(d') * ~x)), ~x) => acosh((~b * ~x) / ~a) / ~b <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (EqQ(~a + ~c, 0) && (EqQ(~b - ~d, 0) && GtQ(~a, 0))) @apply_utils Antiderivative(1 / (sqrt(~a + ~(b') * ~x) * sqrt(~(c') + ~(d') * ~x)), ~x) => Antiderivative(1 / sqrt((~a * ~c - ~b * (~a - ~c) * ~x) - (~b) ^ 2 * (~x) ^ 2), ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (EqQ(~b + ~d, 0) && GtQ(~a + ~c, 0)) @apply_utils Antiderivative(1 / (sqrt(~(a') + ~(b') * ~x) * sqrt(~(c') + ~(d') * ~x)), ~x) => (2 / sqrt(~b)) * Subst(Antiderivative(1 / sqrt((~b * ~c - ~a * ~d) + ~d * (~x) ^ 2), ~x), ~x, sqrt(~a + ~b * ~x)) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (GtQ(~b * ~c - ~a * ~d, 0) && GtQ(~b, 0)) @apply_utils Antiderivative(1 / ((~(a') + ~(b') * ~x) * (~(c') + ~(d') * ~x) ^ (1 / 3)), ~x) => With([q = Rt((~b * ~c - ~a * ~d) / ~b, 3)], (-(log(RemoveContent(~a + ~b * ~x, ~x))) / (2 * ~b * q) - (3 / (2 * ~b * q)) * Subst(Antiderivative(1 / (q - ~x), ~x), ~x, (~c + ~d * ~x) ^ (1 / 3))) + (3 / (2 * ~b)) * Subst(Antiderivative(1 / (q ^ 2 + q * ~x + (~x) ^ 2), ~x), ~x, (~c + ~d * ~x) ^ (1 / 3))) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && PosQ((~b * ~c - ~a * ~d) / ~b) @apply_utils Antiderivative(1 / ((~(a') + ~(b') * ~x) * (~(c') + ~(d') * ~x) ^ (1 / 3)), ~x) => With([q = Rt(-((~b * ~c - ~a * ~d)) / ~b, 3)], (log(RemoveContent(~a + ~b * ~x, ~x)) / (2 * ~b * q) - (3 / (2 * ~b * q)) * Subst(Antiderivative(1 / (q + ~x), ~x), ~x, (~c + ~d * ~x) ^ (1 / 3))) + (3 / (2 * ~b)) * Subst(Antiderivative(1 / ((q ^ 2 - q * ~x) + (~x) ^ 2), ~x), ~x, (~c + ~d * ~x) ^ (1 / 3))) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && NegQ((~b * ~c - ~a * ~d) / ~b) @apply_utils Antiderivative(1 / ((~(a') + ~(b') * ~x) * (~(c') + ~(d') * ~x) ^ (2 / 3)), ~x) => With([q = Rt((~b * ~c - ~a * ~d) / ~b, 3)], (-(log(RemoveContent(~a + ~b * ~x, ~x))) / (2 * ~b * q ^ 2) - (3 / (2 * ~b * q ^ 2)) * Subst(Antiderivative(1 / (q - ~x), ~x), ~x, (~c + ~d * ~x) ^ (1 / 3))) - (3 / (2 * ~b * q)) * Subst(Antiderivative(1 / (q ^ 2 + q * ~x + (~x) ^ 2), ~x), ~x, (~c + ~d * ~x) ^ (1 / 3))) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && PosQ((~b * ~c - ~a * ~d) / ~b) @apply_utils Antiderivative(1 / ((~(a') + ~(b') * ~x) * (~(c') + ~(d') * ~x) ^ (2 / 3)), ~x) => With([q = Rt(-((~b * ~c - ~a * ~d)) / ~b, 3)], -(log(RemoveContent(~a + ~b * ~x, ~x))) / (2 * ~b * q ^ 2) + (3 / (2 * ~b * q ^ 2)) * Subst(Antiderivative(1 / (q + ~x), ~x), ~x, (~c + ~d * ~x) ^ (1 / 3)) + (3 / (2 * ~b * q)) * Subst(Antiderivative(1 / ((q ^ 2 - q * ~x) + (~x) ^ 2), ~x), ~x, (~c + ~d * ~x) ^ (1 / 3))) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && NegQ((~b * ~c - ~a * ~d) / ~b) @apply_utils Antiderivative(1 / ((~(a') + ~(b') * ~x) ^ (1 / 3) * (~(c') + ~(d') * ~x) ^ (2 / 3)), ~x) => With([q = Rt(~d / ~b, 3)], (((-(sqrt(3)) * q) / ~d) * atan((2 * q * (~a + ~b * ~x) ^ (1 / 3)) / (sqrt(3) * (~c + ~d * ~x) ^ (1 / 3)) + 1 / sqrt(3)) - (q / (2 * ~d)) * log(~c + ~d * ~x)) - ((3q) / (2 * ~d)) * log((q * (~a + ~b * ~x) ^ (1 / 3)) / (~c + ~d * ~x) ^ (1 / 3) - 1)) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && PosQ(~d / ~b)) @apply_utils Antiderivative(1 / ((~(a') + ~(b') * ~x) ^ (1 / 3) * (~(c') + ~(d') * ~x) ^ (2 / 3)), ~x) => With([q = Rt(-(~d) / ~b, 3)], ((sqrt(3) * q) / ~d) * atan(1 / sqrt(3) - (2 * q * (~a + ~b * ~x) ^ (1 / 3)) / (sqrt(3) * (~c + ~d * ~x) ^ (1 / 3))) + (q / (2 * ~d)) * log(~c + ~d * ~x) + ((3q) / (2 * ~d)) * log((q * (~a + ~b * ~x) ^ (1 / 3)) / (~c + ~d * ~x) ^ (1 / 3) + 1)) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && NegQ(~d / ~b)) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~m, ~x) => (((~a + ~b * ~x) ^ ~m * (~c + ~d * ~x) ^ ~m) / (~a * ~c + (~b * ~c + ~a * ~d) * ~x + ~b * ~d * (~x) ^ 2) ^ ~m) * Antiderivative((~a * ~c + (~b * ~c + ~a * ~d) * ~x + ~b * ~d * (~x) ^ 2) ^ ~m, ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (LtQ(-1, ~m, 0) && (LeQ(3, Denominator(~m), 4) && AtomQ(~b * ~c + ~a * ~d)))) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~m, ~x) => (((~a + ~b * ~x) ^ ~m * (~c + ~d * ~x) ^ ~m) / ((~a + ~b * ~x) * (~c + ~d * ~x)) ^ ~m) * Antiderivative((~a * ~c + (~b * ~c + ~a * ~d) * ~x + ~b * ~d * (~x) ^ 2) ^ ~m, ~x) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (LtQ(-1, ~m, 0) && LeQ(3, Denominator(~m), 4))) @apply_utils Antiderivative((~(a') + ~(b') * ~x) ^ ~m * (~(c') + ~(d') * ~x) ^ ~n, ~x) => With([p = Denominator(~m)], (p / ~b) * Subst(Antiderivative((~x) ^ (p * (~m + 1) - 1) * ((~c - (~a * ~d) / ~b) + (~d * (~x) ^ p) / ~b) ^ ~n, ~x), ~x, (~a + ~b * ~x) ^ (1 / p))) <-- FreeQ([~a, ~b, ~c, ~d], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (LtQ(-1, ~m, 0) && (LeQ(-1, ~n, 0) && (LeQ(Denominator(~n), Denominator(~m)) && IntLinearQ(~a, ~b, ~c, ~d, ~m, ~n, ~x))))) @apply_utils Antiderivative((~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~n, ~x) => (((~c) ^ ~n * (~b * ~x) ^ (~m + 1)) / (~b * (~m + 1))) * HypergeometricFunctions._₂F₁(-(~n), ~m + 1, ~m + 2, (-(~d) * ~x) / ~c) <-- FreeQ([~b, ~c, ~d, ~m, ~n], ~x) && (Not(IntegerQ(~m)) && (IntegerQ(~n) || GtQ(~c, 0) && Not(EqQ(~n, -1 / 2) && (EqQ((~c) ^ 2 - (~d) ^ 2, 0) && GtQ(-(~d) / (~b * ~c), 0))))) @apply_utils Antiderivative((~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~n, ~x) => ((~c + ~d * ~x) ^ (~n + 1) / (~d * (~n + 1) * (-(~d) / (~b * ~c)) ^ ~m)) * HypergeometricFunctions._₂F₁(-(~m), ~n + 1, ~n + 2, 1 + (~d * ~x) / ~c) <-- FreeQ([~b, ~c, ~d, ~m, ~n], ~x) && (Not(IntegerQ(~n)) && (IntegerQ(~m) || GtQ(-(~d) / (~b * ~c), 0))) @apply_utils Antiderivative((~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~n, ~x) => (((~c) ^ IntPart(~n) * (~c + ~d * ~x) ^ FracPart(~n)) / (1 + (~d * ~x) / ~c) ^ FracPart(~n)) * Antiderivative((~b * ~x) ^ ~m * (1 + (~d * ~x) / ~c) ^ ~n, ~x) <-- FreeQ([~b, ~c, ~d, ~m, ~n], ~x) && (Not(IntegerQ(~m)) && (Not(IntegerQ(~n)) && (Not(GtQ(~c, 0)) && (Not(GtQ(-(~d) / (~b * ~c), 0)) && (RationalQ(~m) && Not(EqQ(~n, -1 / 2) && EqQ((~c) ^ 2 - (~d) ^ 2, 0)) || Not(RationalQ(~n))))))) @apply_utils Antiderivative((~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~n, ~x) => ((((-(~b) * ~c) / ~d) ^ IntPart(~m) * (~b * ~x) ^ FracPart(~m)) / ((-(~d) * ~x) / ~c) ^ FracPart(~m)) * Antiderivative(((-(~d) * ~x) / ~c) ^ ~m * (~c + ~d * ~x) ^ ~n, ~x) <-- FreeQ([~b, ~c, ~d, ~m, ~n], ~x) && (Not(IntegerQ(~m)) && (Not(IntegerQ(~n)) && (Not(GtQ(~c, 0)) && Not(GtQ(-(~d) / (~b * ~c), 0))))) @apply_utils Antiderivative((~a + ~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~n, ~x) => (((~b * ~c - ~a * ~d) ^ ~n * (~a + ~b * ~x) ^ (~m + 1)) / ((~b) ^ (~n + 1) * (~m + 1))) * HypergeometricFunctions._₂F₁(-(~n), ~m + 1, ~m + 2, (-(~d) * (~a + ~b * ~x)) / (~b * ~c - ~a * ~d)) <-- FreeQ([~a, ~b, ~c, ~d, ~m], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (Not(IntegerQ(~m)) && IntegerQ(~n))) @apply_utils Antiderivative((~a + ~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~n, ~x) => ((~a + ~b * ~x) ^ (~m + 1) / (~b * (~m + 1) * (~b / (~b * ~c - ~a * ~d)) ^ ~n)) * HypergeometricFunctions._₂F₁(-(~n), ~m + 1, ~m + 2, (-(~d) * (~a + ~b * ~x)) / (~b * ~c - ~a * ~d)) <-- FreeQ([~a, ~b, ~c, ~d, ~m, ~n], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (Not(IntegerQ(~m)) && (Not(IntegerQ(~n)) && (GtQ(~b / (~b * ~c - ~a * ~d), 0) && (RationalQ(~m) || Not(RationalQ(~n) && GtQ(-(~d) / (~b * ~c - ~a * ~d), 0))))))) @apply_utils Antiderivative((~a + ~(b') * ~x) ^ ~m * (~c + ~(d') * ~x) ^ ~n, ~x) => ((~c + ~d * ~x) ^ FracPart(~n) / ((~b / (~b * ~c - ~a * ~d)) ^ IntPart(~n) * ((~b * (~c + ~d * ~x)) / (~b * ~c - ~a * ~d)) ^ FracPart(~n))) * Antiderivative((~a + ~b * ~x) ^ ~m * Simp((~b * ~c) / (~b * ~c - ~a * ~d) + (~b * ~d * ~x) / (~b * ~c - ~a * ~d), ~x) ^ ~n, ~x) <-- FreeQ([~a, ~b, ~c, ~d, ~m, ~n], ~x) && (NeQ(~b * ~c - ~a * ~d, 0) && (Not(IntegerQ(~m)) && (Not(IntegerQ(~n)) && (RationalQ(~m) || Not(SimplerQ(~n + 1, ~m + 1)))))) @apply_utils Antiderivative((~(a') + ~(b') * ~u) ^ ~(m') * (~(c') + ~(d') * ~u) ^ ~(n'), ~x) => (1 / Coefficient(~u, ~x, 1)) * Subst(Antiderivative((~a + ~b * ~x) ^ ~m * (~c + ~d * ~x) ^ ~n, ~x), ~x, ~u) <-- FreeQ([~a, ~b, ~c, ~d, ~m, ~n], ~x) && (LinearQ(~u, ~x) && NeQ(Coefficient(~u, ~x, 0), 0)) #= IntLinearQ(a,b,c,d,m,n,x)*returns*True*iff*(a+b*x)^m*(c+d*x)^n*is integrable*wrt*x*in*terms*of*non-hypergeometric*functions. =#IntLinearQ((~a), (~b), (~c), (~d), (~m), (~n), (~x)) := IGtQ(m, 0) || IGtQ(n, 0) || IntegersQ(3*m, 3*n) || IntegersQ(4*m, 4*n) || IntegersQ(2*m, 6*n) || IntegersQ(6*m, 2*n) || ILtQ(m + n, -1) || IntegerQ(m + n) && RationalQ(m) end
proofpile-julia0005-42537
{ "provenance": "014.jsonl.gz:242538" }
using DataFrames: DataFrame, DataFrame! using CSV: File using DataStructures using Parameters using Convex, SCS using Plots using MathOptInterface const MOI = MathOptInterface using EllipsisNotation #= Notation: pᵢ - inflow proportions CFᵢ - cumulative inflows CFₒ - cumulative outflows ECᵢ - expected costs of vehicles coming in ECₒ - expected costs of vehicles going out DTC - departure time choices SR - splitting rates =# ROUND_DIGITS = 13 include("types.jl") include("crange.jl") include("utils.jl") include("models.jl") ugap, bgap = 3, 4 # used in computing sending and receiving functions u, w = 1/ugap, 1/bgap Q, N, δ = 24.0, 80, w/u demand_level, T, Tm = 1800, 132*ugap, 80*ugap M = 10 * T α, β, γ, trgt = 1., 0.5, 2., 60*ugap linkdata = DataFrame!(File("nguyen.csv"; delim=", ")) linkdata.l *= ugap; net = Network(linkdata); nclasses, nsinks, nlinks = 1, 2, numlinks(net); srcs, snks, mrgs, divs = sources(net), sinks(net), merges(net), diverges(net); trips = ones(length(srcs), length(snks), nclasses) .* demand_level; include("initchoices.jl"); include("simulation.jl"); include("costcomputation.jl"); include("equilibrium.jl"); DTC, SR = initchoices(); i = 5; DTC, SR = DTC_list[i], SR_list[i]; CFᵢ, CFₒ, states = simulate(); ECᵢ, ECₒ, rtracs = computecosts(); relgap(ECᵢ, DTC) DTC, SR = updatechoices!() relgap(ECᵢ, DTC) DTC_list = [DTC] SR_list = [SR] for i in 1:30 global DTC, SR, CFᵢ, CFₒ, ECᵢ, ECₒ #@show i CFᵢ, CFₒ, states = simulate()#(DTC, SR) ECᵢ, ECₒ, rtracs = computecosts()#(states) @show relgap(ECᵢ, DTC) #@assert approxpositive(Fᵢ) # all((Fᵢ .>= 0.) .| (Fᵢ .≈ 0.)) #@assert approxpositive(Fₒ) # all(Fₒ .>= 0.) @assert all(ECᵢ .>= 0.) @assert all(ECₒ .>= 0.) newDTC, newSR = updatechoices!() #(ECᵢ, DTC, SR) push!(DTC_list, DTC) push!(SR_list, SR) DTC, SR = newDTC, newSR end
proofpile-julia0005-42538
{ "provenance": "014.jsonl.gz:242539" }
using MatrixCompletion @testset "$(format("Exponential Family: forward_map[poisson]"))" begin let tc1 = rand(100) @test check(:l2diff, forward_map(Poisson(),tc1),exp.(tc1),0) @test check(:l2diff, forward_map(:Poisson,tc1),exp.(tc1),0) tc2 = rand(100,100) @test check(:l2diff, forward_map(Poisson(),tc2),exp.(tc2),0) @test check(:l2diff, forward_map(:Poisson,tc2),exp.(tc2),0) end end @testset "$(format("Exponential Family: forward_map[gamma]"))" begin let tc1 = rand(100) @test check(:l2diff, forward_map(Gamma(),tc1),1 ./ tc1,0) @test check(:l2diff, forward_map(:Gamma,tc1),1 ./ tc1,0) tc2 = rand(100,100) @test check(:l2diff, forward_map(Gamma(),tc2),1 ./ tc2,0) @test check(:l2diff, forward_map(:Gamma,tc2),1 ./ tc2,0) end end @testset "$(format("Exponential Family: forward_map[gaussian]"))" begin let tc1 = rand(100) @test check(:l2diff, forward_map(Gaussian(),tc1),tc1,0) @test check(:l2diff, forward_map(:Gaussian,tc1), tc1,0) tc2 = rand(100,100) @test check(:l2diff, forward_map(Gaussian(),tc2),tc2,0) @test check(:l2diff, forward_map(:Gaussian,tc2),tc2,0) end end @testset "$(format("Exponential Family: forward_map[bernoulli]"))" begin let logit = (x) -> log.(x./(1 .- x)) tc1 = rand(100) tc1_logit = logit(tc1) @test check(:l2diff, forward_map(Bernoulli(),tc1_logit),tc1,0) @test check(:l2diff, forward_map(:Bernoulli,tc1_logit), tc1,0) tc2 = rand(100,100) tc2_logit = logit(tc2) @test check(:l2diff, forward_map(Bernoulli(),tc2_logit),tc2,0) @test check(:l2diff, forward_map(:Bernoulli,tc2_logit), tc2,0) end end @testset "$(format("Exponential Family: predict[poisson]"))" begin let tc1 = rand(2:20,100) log_tc1 = log.(tc1) @test check(:l2diff, predict(Poisson(),forward_map(Poisson(),log_tc1)),tc1,0.0) @test check(:l2diff, predict(:Poisson,forward_map(:Poisson,log_tc1)),tc1,0.0) @test predict(:Poisson,[1,1];custom_prediction_function=1) == -1 # tc2 = rand(2:20,100,100) log_tc2 = log.(tc2) @test check(:l2diff, predict(Poisson(),forward_map(Poisson(),log_tc2)),tc2,0.0) @test check(:l2diff, predict(:Poisson,forward_map(:Poisson,log_tc2)),tc2,0.0) @test predict(:Poisson,[1 1;1 1];custom_prediction_function=1) == -1 # end end @testset "$(format("Exponential Family: predict[bernoulli]"))" begin let logit = (x) -> log.(x./(1 .- x)) tc1 = rand(100) tc1_int = Int.(tc1 .> 0.5) logit_tc1 = logit(tc1) @test check(:l2diff, predict(Bernoulli(), forward_map(Bernoulli(),logit_tc1)), tc1_int, 0.0) @test check(:l2diff, predict(:Bernoulli, forward_map(:Bernoulli, logit_tc1)), tc1_int, 0.0) @test predict(:Bernoulli,[1,1];custom_prediction_function=1) == -1 # tc2 = rand(100,100) tc2_int = Int.(tc2 .> 0.5) logit_tc2 = logit(tc2) @test check(:l2diff, predict(Bernoulli(),forward_map(Bernoulli(),logit_tc2)),tc2_int,0.0) @test check(:l2diff, predict(:Bernoulli,forward_map(:Bernoulli,logit_tc2)),tc2_int,0.0) @test predict(:Bernoulli,[1 1;1 1];custom_prediction_function=1) == -1 # end end @testset "$(format("Exponential Family: predict[gaussian]"))" begin let tc1 = rand(100) @test check(:l2diff, predict(Gaussian(),forward_map(Gaussian(),tc1)),tc1,0.0) @test check(:l2diff, predict(:Gaussian,forward_map(:Gaussian,tc1)),tc1,0.0) @test predict(:Gaussian,[1,1];custom_prediction_function=1) == -1 # tc2 = rand(100,100) @test check(:l2diff, predict(Gaussian(),forward_map(Gaussian(),tc2)),tc2,0.0) @test check(:l2diff, predict(:Gaussian,forward_map(:Gaussian,tc2)),tc2,0.0) @test predict(:Poisson,[1 1;1 1];custom_prediction_function=1) == -1 # end end @testset "$(format("Exponential Family: predict[gaussian]"))" begin let tc1 = rand(100) inv_tc1 = 1 ./ tc1 @test check(:l2diff, predict(Gamma(),forward_map(Gamma(),1 ./ tc1)),tc1,0.0) @test check(:l2diff, predict(:Gamma,forward_map(:Gamma,1 ./ tc1)),tc1,0.0) @test predict(:Gamma,[1,1];custom_prediction_function=1) == -1 # tc2 = rand(100,100) inv_tc2 = 1 ./ tc2 @test check(:l2diff, predict(Gamma(),forward_map(Gamma(),inv_tc2)),tc2,0.0) @test check(:l2diff, predict(:Gamma,forward_map(:Gamma,inv_tc2)),tc2,0.0) @test predict(:Poisson,[1 1;1 1];custom_prediction_function=1) == -1 # end end
proofpile-julia0005-42539
{ "provenance": "014.jsonl.gz:242540" }
############################################################################## ## ## Type with stored qr ## ############################################################################## struct DenseQRAllocatedSolver{Tqr <: StridedMatrix, Tu <: AbstractVector} <: AbstractAllocatedSolver qrm::Tqr u::Tu function DenseQRAllocatedSolver{Tqr, Tu}(qrm, u) where {Tqr <: StridedMatrix, Tu <: AbstractVector} length(u) == size(qrm, 1) || throw(DimensionMismatch("u must have length size(J, 1)")) new(qrm, u) end end function DenseQRAllocatedSolver(qrm::Tqr, u::Tu) where {Tqr <: StridedMatrix, Tu <: AbstractVector} DenseQRAllocatedSolver{Tqr, Tu}(qrm, u) end ############################################################################## ## ## solve J'J \ J'y by QR ## ############################################################################## function AbstractAllocatedSolver(nls::LeastSquaresProblem{Tx, Ty, Tf, TJ, Tg}, optimizer::Dogleg{QR}) where {Tx, Ty, Tf, TJ <: StridedVecOrMat, Tg} return DenseQRAllocatedSolver(similar(nls.J), _zeros(nls.y)) end function LinearAlgebra.ldiv!(x::AbstractVector, J::StridedMatrix, y::AbstractVector, A::DenseQRAllocatedSolver) u, qrm = A.u, A.qrm copyto!(qrm, J) copyto!(u, y) if VERSION >= v"1.7.0" ldiv!(qr!(qrm, ColumnNorm()), u) else ldiv!(qr!(qrm, Val(true)), u) end for i in 1:length(x) x[i] = u[i] end return x, 1 end ############################################################################## ## ## solve (J'J + diagm(damp)) \ J'y by QR ## ############################################################################## function AbstractAllocatedSolver(nls::LeastSquaresProblem{Tx, Ty, Tf, TJ, Tg}, optimizer::LevenbergMarquardt{QR}) where {Tx, Ty, Tf, TJ <: StridedVecOrMat, Tg} qrm = zeros(eltype(nls.J), length(nls.y) + length(nls.x), length(nls.x)) u = zeros(eltype(nls.y), length(nls.y) + length(nls.x)) return DenseQRAllocatedSolver(qrm, u) end function LinearAlgebra.ldiv!(x::AbstractVector, J::StridedMatrix, y::AbstractVector, damp::AbstractVector, A::DenseQRAllocatedSolver, verbose::Bool = false) u, qrm = A.u, A.qrm # transform dammp length(u) == length(y) + length(x) || throw(DimensionMismatch("length(u) should equal length(x) + length(y)")) # update qr as |J; diagm(damp)| fill!(qrm, zero(eltype(qrm))) for j in 1:size(J, 2) for i in 1:size(J, 1) qrm[i, j] = J[i, j] end end leny = length(y) for i in 1:length(damp) qrm[leny + i, i] = sqrt(damp[i]) end # update u as |J; 0| fill!(u, zero(eltype(u))) for i in 1:length(y) u[i] = y[i] end if verbose @show mean(u) sleep(1) end # solve if VERSION >= v"1.7.0" ldiv!(qr!(qrm, ColumnNorm()), u) else ldiv!(qr!(qrm, Val(true)), u) end if verbose @show mean(u) sleep(1) end for i in 1:length(x) x[i] = u[i] end return x, 1 end
proofpile-julia0005-42540
{ "provenance": "014.jsonl.gz:242541" }
@i function isolve(out!::T, sg::AbstractSpinglass{SquareLattice, T}, reg::ArrayReg{B,TT}, A_STACK, B_STACK) where {B,T,TT<:Tropical{T}} @invcheckoff begin @routine begin Lx ← sg.lattice.Nx Ly ← sg.lattice.Ny Js ← sg.Js hs ← sg.hs end @safe println("Layer 1/$Lx, stack size: $(A_STACK.top) & $(B_STACK.top)") k ← 0 for j=1:Ly apply_Gh!(reg, j, hs[j], A_STACK) end for j=1:Ly-1 k += 1 apply_Gvb!(reg, (@const (j, j+1)), Js[k], A_STACK) end for i=2:Lx @safe println("Layer $i/$Lx, stack size: $(A_STACK.top) & $(B_STACK.top)") @routine begin for j=1:Ly k += 1 apply_Ghb!(reg, j, Js[k], A_STACK) end end # bookup current state and loss incstack!(B_STACK) store_state!(B_STACK, reg.state) # clean up `NiLang.GLOBAL_STACK` ~@routine # but wait, `k` should not be uncomputed k += Ly # restore the state swap_state!(B_STACK, reg.state) for j=1:Ly apply_Gh!(reg, j, hs[(i-1)*Ly+j], A_STACK) end for j=1:Ly-1 k += 1 apply_Gvb!(reg, (@const (j, j+1)), Js[k], A_STACK) end end summed ← one(TT) i_sum(summed, reg.state) NiLang.SWAP(summed.n, out!) k → length(Js) summed → one(TT) ~@routine end end @i function swap_state!(B_STACK, state) @invcheckoff for j=1:length(state) @inbounds NiLang.SWAP(state[j], B_STACK[j]) end end @i function store_state!(B_STACK, state) @invcheckoff for j = 1:length(state) @inbounds TropicalYao.Reversible.unsafe_store!(B_STACK[j], state[j]) end end @i function isolve_largemem(out!, sg::Spinglass{SquareLattice, T}, reg::ArrayReg{B,TT}, REG_STACK) where {B,T,TT<:Tropical{T}} @invcheckoff begin @routine begin Lx ← sg.lattice.Nx Ly ← sg.lattice.Ny Js ← sg.Js hs ← sg.hs end @safe println("Layer 1/$Lx") k ← 0 for j=1:Ly apply_Gh!(reg, j, hs[j], REG_STACK) end for j=1:Ly-1 k += 1 apply_Gvb!(reg, (@const (j, j+1)), Js[k], REG_STACK) end for i=2:Lx @safe println("Layer $i/$Lx") for j=1:Ly k += 1 apply_Ghb!(reg, j, Js[k], REG_STACK) end for j=1:Ly apply_Gh!(reg, j, hs[(i-1)*Ly+j], REG_STACK) end for j=1:Ly-1 k += 1 apply_Gvb!(reg, (@const (j, j+1)), Js[k], REG_STACK) end end summed ← one(TT) i_sum(summed, reg.state) NiLang.SWAP(summed.n, out!) k → length(Js) summed → one(TT) ~@routine end end cachesize_A(lt::SquareLattice) = lt.Ny cachesize_B(lt::SquareLattice) = lt.Nx-1 cachesize_largemem(lt::SquareLattice) = (lt.Nx-1) * lt.Ny
proofpile-julia0005-42541
{ "provenance": "014.jsonl.gz:242542" }
using WordCloud using HTTP url = "http://en.wikipedia.org/wiki/Special:random" try resp = HTTP.request("GET", url, redirect=true) println(resp.request) content = resp.body |> String wc = wordcloud(content |> html2text |> processtext) |> generate! println("results are saved to fromweb.png") paint(wc, "fromweb.png") wc catch e println(e) end #eval# runexample(:fromweb) #md# ![](fromweb.png)
proofpile-julia0005-42542
{ "provenance": "014.jsonl.gz:242543" }
using Random using Dates using JuMP, BilevelJuMP using MathOptInterface MOI = MathOptInterface MOIU = MOI.Utilities MAX_TIME = 600#600 include("svr.jl") include("rand.jl") include("forecast.jl") include("toll.jl") mode = BilevelJuMP.SOS1Mode() with_att = JuMP.optimizer_with_attributes FA = BilevelJuMP.FortunyAmatMcCarlMode using Xpress using CPLEX using Gurobi using SCIP using Cbc using GLPK using Ipopt using KNITRO using AmplNLWriter using Mosek, MosekTools using Juniper using QuadraticToBinary QB = QuadraticToBinary.Optimizer{Float64} cache(opt) = MOIU.CachingOptimizer( MOIU.UniversalFallback(MOIU.Model{Float64}()), opt) function cpx() s=CPLEX.Optimizer() MOI.set(s, MOI.RawParameter("CPXPARAM_TimeLimit"),MAX_TIME*1) s end # const KN_OPT = KNITRO.Optimizer(maxtimecpu = MAX_TIME*1.0) # function new_knitro() # MOI.empty!(KN_OPT) # return KN_OPT # end SOLVERS = [ #= =# #= SOS1 =# # (with_att(Gurobi.Optimizer, "TimeLimit" => MAX_TIME*1), BilevelJuMP.SOS1Mode(), "gurobi_sos1"), # (with_att(CPLEX.Optimizer, "CPXPARAM_TimeLimit" => MAX_TIME*1), BilevelJuMP.SOS1Mode(), "cplex_sos1"), # (with_att(Xpress.Optimizer, "MAXTIME" => -MAX_TIME*1, "logfile" => "output.log"), BilevelJuMP.SOS1Mode(), "xpress_sos1"), # (with_att(Cbc.Optimizer, "seconds" => MAX_TIME*1.0), BilevelJuMP.SOS1Mode(), "cbc_sos1"), # (with_att(SCIP.Optimizer, "limits/time" => MAX_TIME*1), BilevelJuMP.SOS1Mode(), "scip_sos1"), #= indicator =# # (with_att(CPLEX.Optimizer, "CPXPARAM_TimeLimit" => MAX_TIME), BilevelJuMP.IndicatorMode(), "cplex_indc"), # # (with_att(Gurobi.Optimizer, "TimeLimit" => MAX_TIME), BilevelJuMP.IndicatorMode(), "gurobi_indc"), # not supporting indicator # (with_att(Xpress.Optimizer, "MAXTIME" => -MAX_TIME, "logfile" => "output.log"), BilevelJuMP.IndicatorMode(), "xpress_indc"), # (with_att(Cbc.Optimizer, "seconds" => MAX_TIME*1.0), BilevelJuMP.IndicatorMode(), "cbc_indc"), # # (with_att(SCIP.Optimizer, "limits/time" => MAX_TIME), BilevelJuMP.IndicatorMode(), "scip_indc"), # weird offset error #= Fortuny-Amat 10 =# # # (with_att(GLPK.Optimizer, "tm_lim" => MAX_TIME * 1_000), FA(primal_big_M = 10, dual_big_M = 10), "glpk_fa10"), # # (with_att(Mosek.Optimizer, "MIO_MAX_TIME" => MAX_TIME * 1.0, "OPTIMIZER_MAX_TIME" => MAX_TIME * 1.0), FA(primal_big_M = 10, dual_big_M = 10), "mosek_fa10"), # no sos1 # # (with_att(Gurobi.Optimizer, "TimeLimit" => MAX_TIME*1), FA(primal_big_M = 10, dual_big_M = 10), "gurobi_fa10"), # (with_att(CPLEX.Optimizer, "CPXPARAM_TimeLimit" => MAX_TIME*1), FA(primal_big_M = 10, dual_big_M = 10), "cplex_fa10"), #TODO # (with_att(Xpress.Optimizer, "MAXTIME" => -MAX_TIME*1, "logfile" => "output.log"), FA(primal_big_M = 10, dual_big_M = 10), "xpress_fa10"), # (with_att(Cbc.Optimizer, "seconds" => MAX_TIME*1.0), FA(primal_big_M = 10, dual_big_M = 10), "cbc_fa10"), # (with_att(SCIP.Optimizer, "limits/time" => MAX_TIME*1), FA(primal_big_M = 10, dual_big_M = 10), "scip_fa10"), #= Fortuny-Amat 100 =# # (with_att(GLPK.Optimizer, "tm_lim" => MAX_TIME * 1_000), FA(primal_big_M = 100, dual_big_M = 100), "glpk_fa100"), # (with_att(Mosek.Optimizer, "MIO_MAX_TIME" => MAX_TIME * 1.0, "OPTIMIZER_MAX_TIME" => MAX_TIME * 1.0), FA(primal_big_M = 100, dual_big_M = 100), "mosek_fa100"), # no sos1 # (with_att(Gurobi.Optimizer, "TimeLimit" => MAX_TIME*1), FA(primal_big_M = 100, dual_big_M = 100), "gurobi_fa100"), # (with_att(CPLEX.Optimizer, "CPXPARAM_TimeLimit" => MAX_TIME*1), FA(primal_big_M = 100, dual_big_M = 100), "cplex_fa100"), # (with_att(Xpress.Optimizer, "MAXTIME" => -MAX_TIME*1, "logfile" => "output.log"), FA(primal_big_M = 100, dual_big_M = 100), "xpress_fa100"), # (with_att(Cbc.Optimizer, "seconds" => MAX_TIME*1.0), FA(primal_big_M = 100, dual_big_M = 100), "cbc_fa100"), # (with_att(SCIP.Optimizer, "limits/time" => MAX_TIME*1), FA(primal_big_M = 100, dual_big_M = 100), "scip_fa100"), #= Product NLP =# # (with_att(Ipopt.Optimizer, "max_cpu_time" => MAX_TIME*1.0), BilevelJuMP.ProductMode(1e-7), "ipopt_prod"), # (new_knitro(), BilevelJuMP.ProductMode(1e-7), "knitro_prod"), #= Product BIN 10 =# # (()->QB(GLPK.Optimizer(tm_lim=MAX_TIME*1_000),lb=-10,ub=10), BilevelJuMP.ProductMode(1e-7), "glpk_prod10"), # (()->QB(Mosek.Optimizer(MIO_MAX_TIME=MAX_TIME*1.0,OPTIMIZER_MAX_TIME=MAX_TIME*1.0),lb=-10,ub=10), BilevelJuMP.ProductMode(1e-7), "mosek_prod10"), # (()->QB(Gurobi.Optimizer(TimeLimit=MAX_TIME*1),lb=-10,ub=10), BilevelJuMP.ProductMode(1e-7), "gurobi_prod10"), # (()->QB(cpx(),lb=-10,ub=10), BilevelJuMP.ProductMode(1e-7), "cplex_prod10"), #TODO # (()->QB(Xpress.Optimizer(MAXTIME=-MAX_TIME*1),lb=-10,ub=10), BilevelJuMP.ProductMode(1e-7), "xpress_prod10"), # (()->QB(cache(Cbc.Optimizer(seconds=MAX_TIME*1.0)),lb=-10,ub=10), BilevelJuMP.ProductMode(1e-7), "cbc_prod10"), # (()->QB(SCIP.Optimizer(limits_time=MAX_TIME*1),lb=-10,ub=10), BilevelJuMP.ProductMode(1e-7), "scip_prod10"), #= Product BIN 100 =# # (()->QB(GLPK.Optimizer(tm_lim=MAX_TIME*1_000),lb=-100,ub=100), BilevelJuMP.ProductMode(1e-7), "glpk_prod100"), # (()->QB(Mosek.Optimizer(MIO_MAX_TIME=MAX_TIME*1.0,OPTIMIZER_MAX_TIME=MAX_TIME*1.0),lb=-100,ub=100), BilevelJuMP.ProductMode(1e-7), "mosek_prod100"), # (()->QB(Gurobi.Optimizer(TimeLimit=MAX_TIME*1),lb=-100,ub=100), BilevelJuMP.ProductMode(1e-7), "gurobi_prod100"), # (()->QB(cpx(),lb=-100,ub=100), BilevelJuMP.ProductMode(1e-7), "cplex_prod100"), # (()->QB(Xpress.Optimizer(MAXTIME=-MAX_TIME*1),lb=-100,ub=100), BilevelJuMP.ProductMode(1e-7), "xpress_prod100"), # (()->QB(cache(Cbc.Optimizer(seconds=MAX_TIME*1.0)),lb=-100,ub=100), BilevelJuMP.ProductMode(1e-7), "cbc_prod100"), # (()->QB(SCIP.Optimizer(limits_time=MAX_TIME*1),lb=-100,ub=100), BilevelJuMP.ProductMode(1e-7), "scip_prod100"), #= PrimalDual BIN 10 =# # (()->QB(GLPK.Optimizer(tm_lim=MAX_TIME*1_000),lb=-10,ub=10), BilevelJuMP.StrongDualityEqualityMode(), "glpk_sd10"), # (()->QB(Mosek.Optimizer(MIO_MAX_TIME=MAX_TIME*1.0,OPTIMIZER_MAX_TIME=MAX_TIME*1.0),lb=-10,ub=10), BilevelJuMP.StrongDualityEqualityMode(), "mosek_sd10"), # (()->QB(Gurobi.Optimizer(TimeLimit=MAX_TIME*1),lb=-10,ub=10), BilevelJuMP.StrongDualityEqualityMode(), "gurobi_sd10"), # (()->QB(cpx(),lb=-10,ub=10), BilevelJuMP.StrongDualityEqualityMode(), "cplex_sd10"), # (()->QB(Xpress.Optimizer(MAXTIME=-MAX_TIME*1),lb=-10,ub=10), BilevelJuMP.StrongDualityEqualityMode(), "xpress_sd10"), # (()->QB(cache(Cbc.Optimizer(seconds=MAX_TIME*1.0)),lb=-10,ub=10), BilevelJuMP.StrongDualityEqualityMode(), "cbc_sd10"), #TODO (()->QB(SCIP.Optimizer(limits_time=MAX_TIME*1),lb=-10,ub=10), BilevelJuMP.StrongDualityEqualityMode(), "scip_sd10"), #= PrimalDual BIN 100 =# (()->QB(GLPK.Optimizer(tm_lim=MAX_TIME*1_000),lb=-100,ub=100), BilevelJuMP.StrongDualityEqualityMode(), "glpk_sd100"), (()->QB(Mosek.Optimizer(MIO_MAX_TIME=MAX_TIME*1.0,OPTIMIZER_MAX_TIME=MAX_TIME*1.0),lb=-100,ub=100), BilevelJuMP.StrongDualityEqualityMode(), "mosek_sd100"), (()->QB(Gurobi.Optimizer(TimeLimit=MAX_TIME*1),lb=-100,ub=100), BilevelJuMP.StrongDualityEqualityMode(), "gurobi_sd100"), (()->QB(cpx(),lb=-100,ub=100), BilevelJuMP.StrongDualityEqualityMode(), "cplex_sd100"), (()->QB(Xpress.Optimizer(MAXTIME=-MAX_TIME*1),lb=-100,ub=100), BilevelJuMP.StrongDualityEqualityMode(), "xpress_sd100"), (()->QB(cache(Cbc.Optimizer(seconds=MAX_TIME*1.0)),lb=-100,ub=100), BilevelJuMP.StrongDualityEqualityMode(), "cbc_sd100"), (()->QB(SCIP.Optimizer(limits_time=MAX_TIME*1),lb=-100,ub=100), BilevelJuMP.StrongDualityEqualityMode(), "scip_sd100"), #= Complemets =# # #(with_att(KNITRO.Optimizer, "maxtimecpu" => MAX_TIME*1.0), BilevelJuMP.ComplementMode(), "knitro_comp"), #= Product global =# # # (() -> AmplNLWriter.Optimizer("bonmin"), BilevelJuMP.ProductMode(1e-5)), # # (() -> AmplNLWriter.Optimizer("couenne"), BilevelJuMP.ProductMode(1e-5)), ] PROBLEMS = [ :SVR, # :RAND, :TOLL, :FORECAST, ] SEEDS = [ 1234, # 2345, # 3456, # 4567, # 5678, # 6789, # 7890, # 8901, # 9012, # 0123, ] SVR = [ # (features, sample_size) ( 1, 10), ( 1, 10), ( 2, 10), ( 5, 10), ( 1, 100), ( 2, 100), # 600 ( 5, 100), ( 10, 100), ( 20, 100), ( 50, 100), # ( 1,1000), # hard for prod10 # ( 2,1000), # ( 5,1000), # # # ( 10,1000), # # # ( 20,1000), # # # ( 50,1000), # # # (100,1000), # # # (200,1000), # # # (500,1000), # # () for i in [1,2,5,10,20,50,100,200], j in [10, 100, 1000] ] RAND = [ # (rows, cols) ( 5, 5), ( 10, 5), ( 5, 10), ( 10, 10), ( 50, 10), ( 10, 50), ( 50, 50), # 600 ( 100, 50), ( 50, 100), ( 100, 100), # # ( 500, 100), # # ( 100, 500), # # ( 500, 500), # # (1000, 500), # # ( 500,1000), # # (1000,1000), # # (5000,1000), # # (1000,5000), # # (5000,5000), ] TOLL = [ # nodes 5, 10, 20, # 50, # hard for prod10 # 100, # 200, # also massive on memory # 500, # 600 - broke gurobi # # 1000, # # 2000, # # 5000, ] FORECAST = [ # (products, sample_size) ( 1, 10), ( 2, 10), ( 5, 10), ( 1, 100), # ( 2, 100), # hard for prod10 # ( 5, 100), # 600 # ( 10, 100), # ( 20, 100), # ( 50, 100), # ( 1,1000), # ( 2,1000), # ( 5,1000), # # ( 10,1000), # # ( 20,1000), # # ( 50,1000), # # (100,1000), # # (200,1000), # # (500,1000), # # () for i in [1,2,5,10,20,50,100,200], j in [10, 100, 1000] ] function separator() println() println() println("============================================================") println("============================================================") println() println() end function new_file() cd(dirname(@__FILE__)) FILE = open("bench$(replace("$(now())",":"=>"_")).log", "w") println(FILE, "opt_mode, prob, inst, primal_status, termination_status, solve_time, build_time, lower_obj, upper_obj") flush(FILE) return FILE end function newline(FILE, data, opt, prb, inst, seed) println(FILE, "$opt, $prb, $inst, $seed, $(data[1]),$(data[2]),$(data[3]),$(data[4]),$(data[5]),$(data[6]),$(data[7])") flush(FILE) end FILE = new_file() for seed in SEEDS for (optimizer, mode, name) in SOLVERS if :SVR in PROBLEMS for (features, samples) in SVR separator() @show features, samples, seed, name separator() ret = bench_svr(features, samples, optimizer, mode, seed) newline(FILE, ret, name, :SVR, (features, samples), seed) end end if :RAND in PROBLEMS for (rows, cols) in RAND separator() @show rows, cols, seed, name separator() ret = bench_rand(rows, cols, 0.5, optimizer, mode, seed) newline(FILE, ret, name, :RAND, (rows, cols), seed) end end if :TOLL in PROBLEMS for nodes in TOLL separator() @show nodes, seed, name separator() ret = bench_toll(nodes, optimizer, mode, seed) newline(FILE, ret, name, :TOLL, (nodes,), seed) end end if :FORECAST in PROBLEMS for (products, samples) in FORECAST separator() @show products, samples, seed, name separator() ret = bench_forecast(products, samples, optimizer, mode, seed) newline(FILE, ret, name, :FORE, (products, samples), seed) end end end end close(FILE) exit(0)
proofpile-julia0005-42543
{ "provenance": "014.jsonl.gz:242544" }
using MultivariateOrthogonalPolynomials, ArrayLayouts, BandedMatrices, BlockArrays, Test import MultivariateOrthogonalPolynomials: ModalInterlace, ModalInterlaceLayout, ModalTrav @testset "modalTrav" begin a = ModalTrav(randn(2,5)) b = PseudoBlockArray(a) v = Vector(a) @test zero(a) isa ModalTrav @test zero(a) == zero(b) @test exp.(a) isa ModalTrav @test 2a isa ModalTrav @test a+a isa ModalTrav @test a+b isa PseudoBlockArray @test a+v isa BlockArray @test a .+ exp.(a .+ 1) isa ModalTrav @test exp.(a) == exp.(b) @test a + a == 2a == a+b @test a .+ exp.(a .+ 1) == b .+ exp.(b .+ 1) for k = 1:6 a[k] = k end @test a == 1:6 m = ModalTrav(reshape(1:10, 2, 5)) @test m[Block(3)] == [2,7,9] @test m == [1,3,5,2,7,9] @test copy(m) isa ModalTrav{Int,Matrix{Int}} @test copy(m) == m end @testset "ModalInterlace" begin ops = [brand(2,3,1,2), brand(1,2,1,1), brand(1,2,1,2)] A = ModalInterlace(ops, (3,5), (2,4)) @test MemoryLayout(A) isa ModalInterlaceLayout @test A[[1,4],[1,4,11]] == ops[1] @test A[[2],[2,7]] == ops[2] @test A[[5],[5,12]] == A[[6],[6,13]] == ops[3] b = ModalTrav(1:15) @test A*b ≈ Matrix(A) * Vector(b) ops = [brand(3,3,1,2), brand(2,2,1,1), brand(2,2,1,2), brand(1,1,1,1), brand(1,1,1,2)] B = ModalInterlace(ops, (5,5), (2,4)) @test B\b ≈ Matrix(B) \ Vector(b) end
proofpile-julia0005-42544
{ "provenance": "014.jsonl.gz:242545" }
struct RejectionExact <: AbstractRejectionExact end function solve(problem::PDMPProblem, Flow::Function; verbose::Bool = false, save_rejected = false, ind_save_d = -1:1, ind_save_c = -1:1, n_jumps = Inf64, save_positions = (false, true), save_rate = false, finalizer = finalize_dummy) verbose && println("#"^30) verbose && printstyled(color=:red,"--> Start Rejection method\n") # initialise the problem. If I call twice this function, it should give the same result... init!(problem) # we declare the characteristics for convenience caract = problem.caract ratecache = caract.ratecache simjptimes = problem.simjptimes ti, tf = problem.tspan # it is faster to pre-allocate arrays and fill it at run time n_jumps += 0 # to hold initial vector n_reject = 0 # to hold the number of rejects nsteps = 1 npoints = 2 # number of points for ODE integration xc0 = caract.xc xd0 = caract.xd # Set up initial variables t = ti X0 = copy(xc0) Xd = copy(xd0) res_ode = zeros(2, length(X0)) X0, _, Xd, _, xc_hist, xd_hist, res_ode, ind_save_d, ind_save_c = allocate_arrays(ti, xc0, xd0, n_jumps; rejection = true) tp = [ti, tf] # vector to hold the time interval over which to integrate the flow #variables for rejection algorithm reject = true lambda_star = 0.0 # this is the bound for the rejection method ppf = caract.R(ratecache.rate, X0, Xd, caract.parms, t, true) δt = simjptimes.tstop_extended while (t < tf) && (nsteps < n_jumps) verbose && println("--> step : ",nsteps," / ", n_jumps) reject = true while reject && (nsteps < n_jumps) tp .= [t, min(tf, t + δt / ppf[2]) ] #mettre un lambda_star? Flow(res_ode, X0, Xd, tp) @inbounds for ii in eachindex(X0) X0[ii] = res_ode[end, ii] end verbose && println("----> δt = ", δt, ", t∈", tp, ", dt = ", tp[2]-tp[1], ", xc = ", X0) t = tp[end] ppf = caract.R(ratecache.rate, X0, Xd, caract.parms, t, true) @assert ppf[1] <= ppf[2] "(Rejection algorithm) Your bound on the total rate is wrong, $ppf" if t == tf reject = false else reject = rand() < 1 - ppf[1] / ppf[2] end δt = -log(rand()) if reject n_reject += 1 end end # there is a jump! ppf = caract.R(ratecache.rate, X0, Xd, caract.parms, t, false) if (t < tf) verbose && println("----> Jump!, ratio = ", ppf[1] / ppf[2], ", xd = ", Xd) # make a jump ev = pfsample(ratecache.rate) # we perform the jump affect!(caract.pdmpjump, ev, X0, Xd, caract.parms, t) end nsteps += 1 pushTime!(problem, t) push!(xc_hist, X0[ind_save_c]) push!(xd_hist, Xd[ind_save_d]) save_rate && push!(problem.rate_hist, sum(ratecache.rate)) finalizer(ratecache.rate, caract.xc, caract.xd, caract.parms, t) end if verbose println("--> Done") end if verbose println("--> xd = ",xd_hist[:,1:nsteps]) end return PDMPResult(problem.time, xc_hist, xd_hist, problem.rate_hist, save_positions, nsteps, n_reject) end function solve(problem::PDMPProblem, algo::Rejection{Tode}; reltol = 1e-7, abstol = 1e-9, kwargs...) where {Tode <: Symbol} ode = algo.ode @assert ode in [:cvode, :lsoda, :adams, :bdf] caract = problem.caract # define the ODE flow if ode == :cvode || ode == :bdf Flow0 = (X0_,Xd,tp_) -> Sundials.cvode( (tt,x,xdot) -> caract.F(xdot,x,Xd,caract.parms,tt), X0_, tp_, abstol = abstol, reltol = reltol, integrator = :BDF) elseif ode == :adams Flow0 = (X0_,Xd,tp_) -> Sundials.cvode( (tt,x,xdot) -> caract.F(xdot,x,Xd,caract.parms,tt), X0_, tp_, abstol = abstol, reltol = reltol, integrator = :Adams) elseif ode == :lsoda Flow0 = (X0_,Xd,tp_) -> LSODA.lsoda((tt,x,xdot,data) -> caract.F(xdot,x,Xd,caract.parms,tt), X0_, tp_, abstol = abstol, reltol = reltol) end Flow = (out,X0_,Xd,tp_) -> (out .= Flow0(X0_,Xd,tp_)) return solve(problem, Flow; kwargs...) end function solve(problem::PDMPProblem, algo::Talgo; kwargs...) where {Talgo <: AbstractRejectionExact} Flow = (res_ode, X0, Xd, tp) -> problem.caract.F(res_ode, X0, Xd, problem.caract.parms, tp) solve(problem, Flow; kwargs...) end
proofpile-julia0005-42545
{ "provenance": "014.jsonl.gz:242546" }
using BinaryProvider include("compile.jl") const verbose = ("--verbose" in ARGS) const prefix = Prefix(get([a for a in ARGS if a != "--verbose"], 1, joinpath(@__DIR__, "usr"))) products = [ LibraryProduct(prefix, String["libextraf"], :libextraf), ] src_url = "https://mkatase.github.io/github-hosted/data/libmakef.tar.gz" src_hash = "d33fef76bf8026112b7d441a4038225d679f305eb23fe2dfb5b249ce270eafbe" src_path = joinpath(prefix, "downloads", "libmakef.tar.gz") libname = "libextraf" if !isfile(src_path) || !verify(src_path, src_hash; verbose=verbose) println("Go to compile") compile(libname, src_url, src_hash, prefix=prefix, verbose=verbose) end write_deps_file(joinpath(@__DIR__, "deps.jl"), products, verbose=verbose) println("end of build.jl script")
proofpile-julia0005-42546
{ "provenance": "014.jsonl.gz:242547" }
using YAML, DataFrames, CSV, Plots using Statistics using Streamfall HERE = @__DIR__ DATA_PATH = joinpath(HERE, "../../test/data/hymod/") # Load and generate stream network network = YAML.load_file(joinpath(DATA_PATH, "hymod_network.yml")) sn = create_network("HyMod Network", network) # Load climate data date_format = "YYYY-mm-dd" obs_data = CSV.File(joinpath(DATA_PATH, "leaf_river_data.csv"), comment="#", dateformat=date_format) |> DataFrame hist_streamflow = obs_data[:, "leaf_river_outflow"] climate_data = obs_data[:, ["Date", "leaf_river_P", "leaf_river_ET"]] climate = Climate(climate_data, "_P", "_ET") # This will set node parameters to the optimal values found metric = (obs, sim) -> 1.0 - Streamfall.NNSE(obs, sim) calibrate!(sn, climate, hist_streamflow; metric=metric, MaxTime=90.0) # Save calibrated network spec to file Streamfall.save_network_spec(sn, "hymod_example_calibrated.yml") # Run the model as a single system run_basin!(sn, climate) # Get node nid, node = sn["leaf_river"] @info "Mean flow (ft^3/s)" mean(node.outflow) # Get performance and plot obs = hist_streamflow[:, "leaf_river_outflow"] @info "RMSE" Streamfall.RMSE(obs, node.outflow) @info "NSE" Streamfall.NSE(obs, node.outflow) plot(obs) plot!(node.outflow)
proofpile-julia0005-42547
{ "provenance": "014.jsonl.gz:242548" }
module JLBOX_MODULETest include("$(pwd())/test/helper.jl") reload("$(pwd())/src/JLBOX_MODULE.jl") using JLBOX_MODULE facts("JLBOX_MODULE") do @fact isempty(lintfile("$(pwd())/src/JLBOX_MODULE.jl", returnMsgs=true)) => true @fact isempty(lintfile("$(pwd())/test/JLBOX_MODULE_test.jl", returnMsgs=true)) => true end end # module JLBOX_MODULETest
proofpile-julia0005-42548
{ "provenance": "014.jsonl.gz:242549" }
struct MaximalCoupling{U1<:Distribution, U2<:Distribution} p::U1 q::U2 function MaximalCoupling{U1, U2}(p::U1, q::U2) where {U1, U2} length(p) == length(q) || throw(DimensionMismatch("Coupled distributions of different dimension.")) eltype(p) == eltype(q) || throw(ArgumentError("Coupled distributions of different types.")) new(p, q) end end MaximalCoupling(p::U1, q::U2) where {U1, U2} = MaximalCoupling{U1, U2}(p, q) length(coup::MaximalCoupling) = length(coup.p) eltype(coup::MaximalCoupling) = Union{eltype(coup.p), eltype(coup.q)}