|
--- |
|
license: |
|
- cc-by-4.0 |
|
language: |
|
- en |
|
tags: |
|
- remote-sensing |
|
- planet |
|
- change-detection |
|
- spatiotemporal |
|
- deep-learning |
|
- video-compression |
|
pretty_name: DynamicEarthNet-video |
|
viewer: false |
|
--- |
|
|
|
|
|
<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;"> |
|
|
|
 |
|
|
|
<b><p>This dataset follows the TACO specification.</p></b> |
|
</div> |
|
|
|
<br> |
|
|
|
|
|
# DynamicEarthNet-video: Daily PlanetFusion Image Cubes Compressed as Videos |
|
|
|
## Description |
|
|
|
|
|
### 📦 Dataset |
|
|
|
DynamicEarthNet-video is a storage-efficient re-packaging of the original **DynamicEarthNet** collection. |
|
The archive covers seventy-five 1024 × 1024 px regions (≈ 3 m GSD) across the globe, sampled daily from **1 January 2018 to 31 December 2019**. Each day is delivered as four-band PlanetFusion surface-reflectance images (B04 Red, B03 Green, B02 Blue, B8A Narrow-NIR). Monthly pixel-wise labels annotate seven land-cover classes: impervious, agriculture, forest, wetlands, bare soil, water and snow/ice. |
|
|
|
All original GeoTIFF stacks (≈ 525 GB) are transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** to 12-bit H.265/HEVC, yielding dramatic size savings while preserving scientific fidelity: |
|
|
|
| Version | Size | PSNR | Ratio | |
|
| --------------------------- | ---------: | ------: | ----: | |
|
| Raw GeoTIFF | 525 GB | — | 1 × | |
|
| **DynamicEarthNet-video** | **8.5 GB** | 60.1 dB | 62 × | |
|
| Extra-compressed (optional) | 2.1 GB | 54 dB | 249 × | |
|
|
|
Extensive tests show that semantic change-segmentation scores obtained with U-TAE, U-ConvLSTM and 3D-UNet remain statistically unchanged (Δ mIoU ≤ 0.02 pp) when the compressed cubes replace the raw imagery. |
|
|
|
The compact video format therefore removes I/O bottlenecks and enables: |
|
|
|
* end-to-end training of sequence models directly from disk, |
|
* rapid experimentation on 4-band daily time-series, |
|
* efficient sharing of benchmarks for change detection and forecasting. |
|
### 🛰️ Sensors |
|
|
|
| Instrument | Platform | Bands | Native GSD | Role | |
|
| ---------------- | --------------------------- | --------- | ---------- | -------------------- | |
|
| **PlanetFusion** | PlanetScope / SkySat fusion | RGB + NIR | 3 m | Daily image sequence | |
|
|
|
|
|
## 👤 Creators |
|
|
|
|
|
| Name | Affiliation | |
|
| ---------------------- | ------------------------------------ | |
|
| Achraf Toker | Technical University of Munich (TUM) | |
|
| Lisa Kondmann | TUM | |
|
| Manuel Weber | TUM | |
|
| Martin Eisenberger | TUM | |
|
| Alfonso Camero | TUM | |
|
| Jing Hu | TUM | |
|
| André Pregel Höderlein | TUM | |
|
| Çagatay Şenaras | Planet Labs PBC | |
|
| Tyler Davis | Planet Labs PBC | |
|
| Daniel Cremers | TUM | |
|
| Guido Marchisio | Planet Labs PBC | |
|
| Xiao Xiang Zhu | German Aerospace Center (DLR) / TUM | |
|
| Laura Leal-Taixé | TUM | |
|
|
|
|
|
## 📂 Original dataset |
|
|
|
**Download (TUM Mediatum)**: [https://mediatum.ub.tum.de/1650201](https://mediatum.ub.tum.de/1650201) |
|
|
|
|
|
|
|
## 🌮 Taco dataset |
|
|
|
## ⚡ Reproducible Example |
|
|
|
<a target="_blank" href="https://colab.research.google.com/drive/1V3kfJmbWJRVncQwbdqLKgDp4-adMVy4N?usp=sharing"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> |
|
</a> |
|
|
|
```python |
|
import tacoreader |
|
import xarrayvideo as xav |
|
import xarray as xr |
|
import matplotlib.pyplot as plt |
|
|
|
# Load tacos |
|
table = tacoreader.load("tacofoundation:dynamicearthnet-video") |
|
|
|
# Read a sample row |
|
idx = 0 |
|
row = dataset.read(idx) |
|
row_id = dataset.iloc[idx]["tortilla:id"] |
|
``` |
|
|
|
<center> |
|
<img src="assets/example.png" width="100%" /> |
|
</center> |
|
|
|
|
|
## 🛰️ Sensor Information |
|
|
|
Sensors: **planet** |
|
|
|
## 🎯 Task |
|
|
|
|
|
* **Semantic change detection** and **land-cover mapping** on daily 4-band sequences. |
|
* Benchmarks include U-TAE, U-ConvLSTM, 3D-UNet (official splits A/B/C) . |
|
* DynamicEarthNet-video can also serve for next-frame prediction and self-supervised representation learning on high-frequency optical data. |
|
|
|
## 📚 References |
|
|
|
|
|
### Publication 01 |
|
|
|
* **DOI**: [10.48550/arXiv.2203.12560](https://doi.org/10.48550/arXiv.2203.12560) |
|
* **Summary**: Toker *et al.* introduce **DynamicEarthNet**, a benchmark of 75 daily 4-band PlanetFusion image cubes (3 m, 2018-2019) with monthly 7-class land-cover masks for semantic‐change segmentation. The paper establishes U-TAE, U-ConvLSTM and 3D-UNet baselines and proposes spatially blocked cross-validation to limit autocorrelation. ([arXiv][1]) |
|
* **BibTeX Citation** |
|
|
|
```bibtex |
|
@inproceedings{toker2022dynamicearthnet, |
|
title = {DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation}, |
|
author = {Toker, Aykut and Kondmann, Leonie and Weber, Markus and Eisenberger, Marvin and Camero, Alejandro and others}, |
|
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, |
|
year = {2022}, |
|
doi = {10.48550/arXiv.2203.12560} |
|
} |
|
``` |
|
|
|
|
|
## 💬 Discussion |
|
|
|
Chat with the maintainers: [https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions](https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions) |
|
|
|
|
|
## 🤝 Data Providers |
|
|
|
| Name | Role | URL | |
|
| --------------- | ---------------- | ------------------------------------------------ | |
|
| Planet Labs PBC | Imagery provider | [https://www.planet.com](https://www.planet.com) | |
|
|
|
## 👥 Curators |
|
|
|
| Name | Organization | URL | |
|
| ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- | |
|
| Oscar J. Pellicer-Valero | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.com/citations?user=CCFJshwAAAAJ&hl=en) | |
|
| Cesar Aybar | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.es/citations?user=rfF51ocAAAAJ&hl=es) | |
|
| Julio Contreras | Image Signal Processing (ISP) | [GitHub](https://github.com/JulioContrerasH) | |