izzcw's picture
End of training
4c12bcd verified
metadata
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
  - llama-factory
  - full
  - generated_from_trainer
model-index:
  - name: large_crafting_sft_fail
    results: []

large_crafting_sft_fail

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the identity and the large_crafting_sft_fail datasets. It achieves the following results on the evaluation set:

  • Loss: 0.3223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
0.5429 0.0323 50 0.4980
0.5398 0.0646 100 0.4740
0.5484 0.0969 150 0.4833
0.5265 0.1291 200 0.4780
0.5278 0.1614 250 0.4793
0.5259 0.1937 300 0.4519
0.5293 0.2260 350 0.4497
0.5098 0.2583 400 0.4303
0.482 0.2906 450 0.4249
0.4683 0.3229 500 0.4224
0.4572 0.3552 550 0.4136
0.456 0.3874 600 0.4034
0.4606 0.4197 650 0.3983
0.4285 0.4520 700 0.3874
0.4499 0.4843 750 0.3806
0.4198 0.5166 800 0.3685
0.4208 0.5489 850 0.3661
0.4379 0.5812 900 0.3637
0.4075 0.6134 950 0.3558
0.4121 0.6457 1000 0.3513
0.4112 0.6780 1050 0.3454
0.4041 0.7103 1100 0.3457
0.3852 0.7426 1150 0.3384
0.3656 0.7749 1200 0.3340
0.384 0.8072 1250 0.3303
0.3605 0.8395 1300 0.3276
0.3593 0.8717 1350 0.3247
0.3624 0.9040 1400 0.3233
0.3734 0.9363 1450 0.3229
0.3609 0.9686 1500 0.3223

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0