|
--- |
|
library_name: transformers |
|
license: llama3 |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: large_crafting_sft_fail |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# large_crafting_sft_fail |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the identity and the large_crafting_sft_fail datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3223 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.5429 | 0.0323 | 50 | 0.4980 | |
|
| 0.5398 | 0.0646 | 100 | 0.4740 | |
|
| 0.5484 | 0.0969 | 150 | 0.4833 | |
|
| 0.5265 | 0.1291 | 200 | 0.4780 | |
|
| 0.5278 | 0.1614 | 250 | 0.4793 | |
|
| 0.5259 | 0.1937 | 300 | 0.4519 | |
|
| 0.5293 | 0.2260 | 350 | 0.4497 | |
|
| 0.5098 | 0.2583 | 400 | 0.4303 | |
|
| 0.482 | 0.2906 | 450 | 0.4249 | |
|
| 0.4683 | 0.3229 | 500 | 0.4224 | |
|
| 0.4572 | 0.3552 | 550 | 0.4136 | |
|
| 0.456 | 0.3874 | 600 | 0.4034 | |
|
| 0.4606 | 0.4197 | 650 | 0.3983 | |
|
| 0.4285 | 0.4520 | 700 | 0.3874 | |
|
| 0.4499 | 0.4843 | 750 | 0.3806 | |
|
| 0.4198 | 0.5166 | 800 | 0.3685 | |
|
| 0.4208 | 0.5489 | 850 | 0.3661 | |
|
| 0.4379 | 0.5812 | 900 | 0.3637 | |
|
| 0.4075 | 0.6134 | 950 | 0.3558 | |
|
| 0.4121 | 0.6457 | 1000 | 0.3513 | |
|
| 0.4112 | 0.6780 | 1050 | 0.3454 | |
|
| 0.4041 | 0.7103 | 1100 | 0.3457 | |
|
| 0.3852 | 0.7426 | 1150 | 0.3384 | |
|
| 0.3656 | 0.7749 | 1200 | 0.3340 | |
|
| 0.384 | 0.8072 | 1250 | 0.3303 | |
|
| 0.3605 | 0.8395 | 1300 | 0.3276 | |
|
| 0.3593 | 0.8717 | 1350 | 0.3247 | |
|
| 0.3624 | 0.9040 | 1400 | 0.3233 | |
|
| 0.3734 | 0.9363 | 1450 | 0.3229 | |
|
| 0.3609 | 0.9686 | 1500 | 0.3223 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|