mikedata's picture
🍻 cheers
3476fb5 verified
|
raw
history blame
3.24 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - fakevsreal
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: real_vs_fake_image_model_vit_base
    results: []

real_vs_fake_image_model_vit_base

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0189
  • Accuracy: 0.9953

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0094 0.1883 100 0.0243 0.9941
0.0165 0.3766 200 0.0351 0.9901
0.0239 0.5650 300 0.0470 0.9876
0.0179 0.7533 400 0.0678 0.9856
0.0166 0.9416 500 0.0296 0.9920
0.0138 1.1299 600 0.0337 0.9926
0.0574 1.3183 700 0.1020 0.9772
0.0256 1.5066 800 0.0612 0.9847
0.0327 1.6949 900 0.0616 0.9846
0.0086 1.8832 1000 0.0272 0.9923
0.008 2.0716 1100 0.0329 0.9920
0.0014 2.2599 1200 0.0250 0.9939
0.0132 2.4482 1300 0.0248 0.9937
0.0189 2.6365 1400 0.0266 0.9936
0.0034 2.8249 1500 0.0225 0.9948
0.009 3.0132 1600 0.0240 0.9942
0.0009 3.2015 1700 0.0244 0.9942
0.0054 3.3898 1800 0.0339 0.9928
0.0046 3.5782 1900 0.0248 0.9945
0.0135 3.7665 2000 0.0245 0.9945
0.0274 3.9548 2100 0.0241 0.9947
0.0031 4.1431 2200 0.0225 0.9947
0.0121 4.3315 2300 0.0210 0.9952
0.0055 4.5198 2400 0.0209 0.9953
0.0183 4.7081 2500 0.0197 0.9955
0.0077 4.8964 2600 0.0189 0.9953

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0