VideoGrain / README.md
XiangpengYang's picture
new
55c2b1c
|
raw
history blame
1.97 kB
# VideoGrain: Modulating Space-Time Attention for Multi-Grained Video Editing (ICLR 2025)
## [<a href="https://knightyxp.github.io/VideoGrain_project_page/" target="_blank">Project Page</a>]
[![arXiv](https://img.shields.io/badge/arXiv-TokenFlow-b31b1b.svg)](https://arxiv.org/abs/)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/)
[![Project page](https://img.shields.io/badge/Project-Page-brightgreen)](https://mc-e.github.io/project/ReVideo/)
## ▢️ Setup Environment
Our method is tested using cuda12.1, fp16 of accelerator and xformers on a single L40.
```bash
# Step 1: Create and activate Conda environment
conda create -n st-modulator python==3.10
conda activate st-modulator
# Step 2: Install PyTorch, CUDA and Xformers
conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=12.1 -c pytorch -c nvidia
pip install --pre -U xformers==0.0.27
# Step 3: Install additional dependencies with pip
pip install -r requirements.txt
```
`xformers` is recommended to save memory and running time.
</details>
You may download all data and checkpoints using the following bash command
```bash
bash download_all.sh
```
## πŸ”› Prepare all the data
```
gdown https://drive.google.com/file/d/1dzdvLnXWeMFR3CE2Ew0Bs06vyFSvnGXA/view?usp=drive_link
tar -zxvf videograin_data.tar.gz
```
## πŸ”₯ ST-Modulator Editing
You could reproduce multi-grained editing results in our teaser by running:
```bash
bash test.sh
#or accelerate launch test.py --config config/run_two_man.yaml
```
<details><summary>The result is saved at `./result` . (Click for directory structure) </summary>
```
result
β”œβ”€β”€ run_two_man
β”‚ β”œβ”€β”€ infer_samples
β”‚ β”œβ”€β”€ sample
β”‚ β”œβ”€β”€ step_0 # result image folder
β”‚ β”œβ”€β”€ step_0.mp4 # result video
β”‚ β”œβ”€β”€ source_video.mp4 # the input video
```
</details>