tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
7630c70 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - asymmetric
  - inference-free
  - splade
  - generated_from_trainer
  - dataset_size:99000
  - loss:SpladeLoss
widget:
  - source_sentence: where is the tiber river located in italy
    sentences:
      - >-
        Sales taxes in British Columbia On 1 July 2010, the PST and GST were
        combined into the Harmonized Sales Tax (HST) levied according to the
        provisions of the GST. The conversion to HST was controversial. Popular
        opposition led to a referendum on the tax system, the first such
        referendum in the Commonwealth of Nations, resulting in the province
        reverting to the former PST/GST model on 1 April 2013.
      - "Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252\_mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709\_sq\_mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks."
      - >-
        Water in California California's limited water supply comes from two
        main sources: surface water, or water that travels or gathers on the
        ground, like rivers, streams, and lakes; and groundwater, which is water
        that is pumped out from the ground. California has also begun producing
        a small amount of desalinated water, water that was once sea water, but
        has been purified.
  - source_sentence: what kind of car does jay gatsby drive
    sentences:
      - >-
        Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the
        Buchanans decide to visit New York City. Tom borrows Gatsby's yellow
        Rolls Royce to drive up to the city. On the way to New York City, Tom
        makes a detour at a gas station in "the Valley of Ashes", a run-down
        part of Long Island. The owner, George Wilson, shares his concern that
        his wife, Myrtle, may be having an affair. This unnerves Tom, who has
        been having an affair with Myrtle, and he leaves in a hurry.
      - "Panama Canal The Panama Canal (Spanish: Canal de Panamá) is an artificial 77\_km (48\_mi) waterway in Panama that connects the Atlantic Ocean with the Pacific Ocean. The canal cuts across the Isthmus of Panama and is a conduit for maritime trade. Canal locks are at each end to lift ships up to Gatun Lake, an artificial lake created to reduce the amount of excavation work required for the canal, 26 m (85 ft) above sea level, and then lower the ships at the other end. The original locks are 34 m (110 ft) wide. A third, wider lane of locks was constructed between September 2007 and May 2016. The expanded canal began commercial operation on June 26, 2016. The new locks allow transit of larger, post-Panamax ships, capable of handling more cargo.[1]"
      - >-
        Solar maximum Predictions of a future maximum's timing and strength are
        very difficult; predictions vary widely. There was a solar maximum in
        2000. In 2006 NASA initially expected a solar maximum in 2010 or 2011,
        and thought that it could be the strongest since 1958.[3] However, the
        solar maximum was not declared to have occurred until 2014, and even
        then was ranked among the weakest on record.[4]
  - source_sentence: who sings if i can dream about you
    sentences:
      - >-
        Wesley Jonathan Wesley Jonathan Waples (born October 18, 1978), known
        professionally as Wesley Jonathan, is an American actor. He is best
        known for his starring role as Jamal Grant on the NBC Saturday morning
        comedy-drama series City Guys, Sweetness in the 2005 film Roll Bounce,
        as well as Burrell "Stamps" Ballentine on TV Land's The Soul Man.
      - >-
        I Can Dream About You "I Can Dream About You" is a song performed by
        American singer Dan Hartman on the soundtrack album of the film Streets
        of Fire. Released in 1984 as a single from the soundtrack, and included
        on Hartman's album I Can Dream About You, it reached number 6 on the
        Billboard Hot 100.[1]
      - >-
        Blood is thicker than water In modern society, the proverb "blood is
        thicker than water" is used to imply that family relationships are
        always more important than friends.
  - source_sentence: who did jesse palmer end up with on the bachelor
    sentences:
      - >-
        Jesse Palmer In 2004, Palmer was the first professional athlete to
        appear on The Bachelor television program and the first non-American
        bachelor, in which he was given his choice of eligible single women. He
        eventually selected Jessica Bowlin, but their courtship lasted for only
        a few months after the end of the show.[19][20]
      - >-
        Wave base In seawater, the water particles are moved in a circular
        orbital motion when a wave passes. The radius of the circle of motion
        for any given water molecule decreases exponentially with increasing
        depth. The wave base, which is the depth of influence of a water wave,
        is about half the wavelength.
      - >-
        Do You Remember the First Time? (The Vampire Diaries) Elena, after
        everyone continues to convince her that she had once loved damon decides
        to run through the magic free, mystic falls border. So she does, and she
        gets glimpses of her and Damon but never fully remembers yet that she
        loves him. Damon pulls her back across the line and she asks about a
        kiss in the rain. He continues to try to get her to remember.
  - source_sentence: when did the american civil rights movement end
    sentences:
      - >-
        A Sunday Afternoon on the Island of La Grande Jatte A Sunday Afternoon
        on the Island of La Grande Jatte (French: Un dimanche après-midi à l'Île
        de la Grande Jatte) painted in 1884, is one of Georges Seurat's most
        famous works. It is a leading example of pointillist technique, executed
        on a large canvas. Seurat's composition includes a number of Parisians
        at a park on the banks of the River Seine.
      - "Paleolithic Paleolithic humans made tools of stone, bone, and wood.[23] The early paleolithic hominins, Australopithecus, were the first users of stone tools. Excavations in Gona, Ethiopia have produced thousands of artifacts, and through radioisotopic dating and magnetostratigraphy, the sites can be firmly dated to 2.6Â\_million years ago. Evidence shows these early hominins intentionally selected raw materials with good flaking qualities and chose appropriate sized stones for their needs to produce sharp-edged tools for cutting.[29]"
      - >-
        African-American civil rights movement (1954–1968) The Civil Rights
        Movement (also known as the American civil rights movement,
        African-American civil rights movement, and other terms,[b]) was a human
        rights movement from 1954–1968 that encompassed strategies, groups,
        and social movements to accomplish its goal of ending legalized racial
        segregation and discrimination laws in the United States. The movement
        secured the legal recognition and federal protection of black Americans
        in the United States Constitution and federal law.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
co2_eq_emissions:
  emissions: 11.776380098641885
  energy_consumed: 0.030296679972425883
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.096
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.54
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.68
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.74
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.136
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07400000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.28
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.54
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.68
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.74
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5066725139399298
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4317460317460317
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4432974611015074
            name: Dot Map@100
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.44
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.58
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.58
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.64
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.44
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3866666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.29600000000000004
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.248
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.043253729866814
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.07701448892020092
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.0882103437254049
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.11441879984163104
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3142746286394966
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5100555555555555
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.13631231221886872
            name: Dot Map@100
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.078
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.27
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.58
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.66
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.72
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5073424422892974
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4506666666666666
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4421389971626089
            name: Dot Map@100
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.3333333333333333
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5733333333333334
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6533333333333333
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7200000000000001
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3333333333333333
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.25555555555555554
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.19066666666666668
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13333333333333333
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.197751243288938
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.399004829640067
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.476070114575135
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.524806266613877
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.44276319495624133
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4641560846560846
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.34058292349432834
            name: Dot Map@100

Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples

This is a Asymmetric Inference-free SPLADE Sparse Encoder model trained on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: Asymmetric Inference-free SPLADE Sparse Encoder
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Asym(
    (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
    (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
    (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/inference-free-splade-bert-tiny-nq-3e-6-lambda-corpus")
# Run inference
sentences = [
    'when did the american civil rights movement end',
    'African-American civil rights movement (1954–1968) The Civil Rights Movement (also known as the American civil rights movement, African-American civil rights movement, and other terms,[b]) was a human rights movement from 1954–1968 that encompassed strategies, groups, and social movements to accomplish its goal of ending legalized racial segregation and discrimination laws in the United States. The movement secured the legal recognition and federal protection of black Americans in the United States Constitution and federal law.',
    'Paleolithic Paleolithic humans made tools of stone, bone, and wood.[23] The early paleolithic hominins, Australopithecus, were the first users of stone tools. Excavations in Gona, Ethiopia have produced thousands of artifacts, and through radioisotopic dating and magnetostratigraphy, the sites can be firmly dated to 2.6Â\xa0million years ago. Evidence shows these early hominins intentionally selected raw materials with good flaking qualities and chose appropriate sized stones for their needs to produce sharp-edged tools for cutting.[29]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO NanoNFCorpus NanoNQ
dot_accuracy@1 0.28 0.44 0.28
dot_accuracy@3 0.54 0.58 0.6
dot_accuracy@5 0.68 0.58 0.7
dot_accuracy@10 0.74 0.64 0.78
dot_precision@1 0.28 0.44 0.28
dot_precision@3 0.18 0.3867 0.2
dot_precision@5 0.136 0.296 0.14
dot_precision@10 0.074 0.248 0.078
dot_recall@1 0.28 0.0433 0.27
dot_recall@3 0.54 0.077 0.58
dot_recall@5 0.68 0.0882 0.66
dot_recall@10 0.74 0.1144 0.72
dot_ndcg@10 0.5067 0.3143 0.5073
dot_mrr@10 0.4317 0.5101 0.4507
dot_map@100 0.4433 0.1363 0.4421

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3333
dot_accuracy@3 0.5733
dot_accuracy@5 0.6533
dot_accuracy@10 0.72
dot_precision@1 0.3333
dot_precision@3 0.2556
dot_precision@5 0.1907
dot_precision@10 0.1333
dot_recall@1 0.1978
dot_recall@3 0.399
dot_recall@5 0.4761
dot_recall@10 0.5248
dot_ndcg@10 0.4428
dot_mrr@10 0.4642
dot_map@100 0.3406

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and corpus
  • Approximate statistics based on the first 1000 samples:
    query corpus
    type dict dict
    details
  • Samples:
    query corpus
    {'query': "who played the father in papa don't preach"} {'corpus': 'Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.'}
    {'query': 'where was the location of the battle of hastings'} {'corpus': 'Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.'}
    {'query': 'how many puppies can a dog give birth to'} {'corpus': 'Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]'}
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): Asym(
          (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
          (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
          (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
        )
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 3e-06, 'lambda_query': 0, 'corpus_regularizer': FlopsLoss(
      (model): SparseEncoder(
        (0): Asym(
          (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
          (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
          (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
        )
      )
    ), 'query_regularizer': None}
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and corpus
  • Approximate statistics based on the first 1000 samples:
    query corpus
    type dict dict
    details
  • Samples:
    query corpus
    {'query': 'where is the tiber river located in italy'} {'corpus': 'Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252\xa0mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709\xa0sq\xa0mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.'}
    {'query': 'what kind of car does jay gatsby drive'} {'corpus': 'Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.'}
    {'query': 'who sings if i can dream about you'} {'corpus': 'I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]'}
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): Asym(
          (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
          (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
          (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
        )
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 3e-06, 'lambda_query': 0, 'corpus_regularizer': FlopsLoss(
      (model): SparseEncoder(
        (0): Asym(
          (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
          (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
          (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
        )
      )
    ), 'query_regularizer': None}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.0129 20 1.5408 - - - - -
0.0259 40 1.4811 - - - - -
0.0388 60 1.2964 - - - - -
0.0517 80 0.9822 - - - - -
0.0646 100 0.6764 - - - - -
0.0776 120 0.547 - - - - -
0.0905 140 0.4755 - - - - -
0.1034 160 0.4212 - - - - -
0.1164 180 0.4562 - - - - -
0.1293 200 0.4057 0.3378 0.4848 0.3101 0.4742 0.4230
0.1422 220 0.3772 - - - - -
0.1551 240 0.3516 - - - - -
0.1681 260 0.3768 - - - - -
0.1810 280 0.3357 - - - - -
0.1939 300 0.3209 - - - - -
0.2069 320 0.3221 - - - - -
0.2198 340 0.3183 - - - - -
0.2327 360 0.3182 - - - - -
0.2456 380 0.333 - - - - -
0.2586 400 0.2946 0.2770 0.5115 0.3062 0.4842 0.4340
0.2715 420 0.295 - - - - -
0.2844 440 0.3019 - - - - -
0.2973 460 0.2882 - - - - -
0.3103 480 0.3203 - - - - -
0.3232 500 0.3215 - - - - -
0.3361 520 0.3018 - - - - -
0.3491 540 0.2918 - - - - -
0.3620 560 0.3365 - - - - -
0.3749 580 0.2847 - - - - -
0.3878 600 0.3382 0.2605 0.5192 0.3093 0.5002 0.4429
0.4008 620 0.2845 - - - - -
0.4137 640 0.2529 - - - - -
0.4266 660 0.2885 - - - - -
0.4396 680 0.2853 - - - - -
0.4525 700 0.2711 - - - - -
0.4654 720 0.2331 - - - - -
0.4783 740 0.2612 - - - - -
0.4913 760 0.2751 - - - - -
0.5042 780 0.2458 - - - - -
0.5171 800 0.2829 0.2475 0.5167 0.3117 0.5019 0.4434
0.5301 820 0.2698 - - - - -
0.5430 840 0.2455 - - - - -
0.5559 860 0.2769 - - - - -
0.5688 880 0.2569 - - - - -
0.5818 900 0.2404 - - - - -
0.5947 920 0.2538 - - - - -
0.6076 940 0.2449 - - - - -
0.6206 960 0.2649 - - - - -
0.6335 980 0.271 - - - - -
0.6464 1000 0.2081 0.2382 0.5087 0.3114 0.5082 0.4427
0.6593 1020 0.2627 - - - - -
0.6723 1040 0.2519 - - - - -
0.6852 1060 0.2463 - - - - -
0.6981 1080 0.2565 - - - - -
0.7111 1100 0.2586 - - - - -
0.7240 1120 0.2521 - - - - -
0.7369 1140 0.2441 - - - - -
0.7498 1160 0.2595 - - - - -
0.7628 1180 0.2612 - - - - -
0.7757 1200 0.2623 0.2324 0.5019 0.3129 0.5073 0.4407
0.7886 1220 0.2393 - - - - -
0.8016 1240 0.2606 - - - - -
0.8145 1260 0.2328 - - - - -
0.8274 1280 0.271 - - - - -
0.8403 1300 0.2556 - - - - -
0.8533 1320 0.2468 - - - - -
0.8662 1340 0.2389 - - - - -
0.8791 1360 0.2354 - - - - -
0.8920 1380 0.2331 - - - - -
0.9050 1400 0.2345 0.2303 0.5073 0.3139 0.5072 0.4428
0.9179 1420 0.2364 - - - - -
0.9308 1440 0.2125 - - - - -
0.9438 1460 0.2634 - - - - -
0.9567 1480 0.259 - - - - -
0.9696 1500 0.2496 - - - - -
0.9825 1520 0.2563 - - - - -
0.9955 1540 0.2475 - - - - -
-1 -1 - - 0.5067 0.3143 0.5073 0.4428

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.030 kWh
  • Carbon Emitted: 0.012 kg of CO2
  • Hours Used: 0.096 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}