Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,384 Bytes
cc5b602 6f619d7 ae90620 6386510 1898bf7 652620b 1898bf7 6386510 51a7d9e a1a5283 e6367a7 2fb89d3 1898bf7 f663ac7 1898bf7 f663ac7 1898bf7 f663ac7 1898bf7 f663ac7 1898bf7 f663ac7 1898bf7 f663ac7 1898bf7 f663ac7 1898bf7 f663ac7 1898bf7 2fb89d3 1898bf7 2fb89d3 1898bf7 2fb89d3 f663ac7 0486bff 4ed884e 2fb89d3 d95f796 2fb89d3 68759b3 4ed884e 1898bf7 f663ac7 1898bf7 3bce535 f663ac7 1898bf7 f663ac7 1898bf7 652620b f663ac7 1898bf7 f779be9 1898bf7 2fb89d3 f663ac7 2fb89d3 f663ac7 2fb89d3 f663ac7 2fb89d3 f663ac7 652620b 2fb89d3 3bce535 c02dde9 6f28fd6 652620b f663ac7 1898bf7 2fb89d3 1898bf7 f663ac7 bacf4cd f663ac7 2fb89d3 1898bf7 f663ac7 1898bf7 f663ac7 1898bf7 f663ac7 1898bf7 436bf67 1898bf7 f80f6ce f663ac7 1898bf7 f663ac7 d95f796 51a7d9e 1898bf7 51a7d9e 1898bf7 51a7d9e 559ab3f 51a7d9e 559ab3f 82baec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import gradio as gr
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "AGI-0/Art-v0-3B"
class ConversationManager:
def __init__(self):
self.model_messages = [] # Stores raw responses with tags
def format_for_display(self, raw_response):
"""Convert model response to user-friendly markdown.
Keeps original response intact for model."""
# No response? Return empty
if not raw_response:
return ""
display_response = raw_response
# Handle reasoning sections
while "<|start_reasoning|>" in display_response and "<|end_reasoning|>" in display_response:
start = display_response.find("<|start_reasoning|>")
end = display_response.find("<|end_reasoning|>") + len("<|end_reasoning|>")
# Extract reasoning content
reasoning_block = display_response[start:end]
reasoning_content = reasoning_block.replace("<|start_reasoning|>", "").replace("<|end_reasoning|>", "")
# Replace with markdown details/summary
markdown_block = f"\n<details><summary>View Reasoning</summary>\n\n{reasoning_content}\n\n</details>\n"
display_response = display_response[:start] + markdown_block + display_response[end:]
# Clean up other tags
tags_to_remove = [
"<|im_start|>",
"<|im_end|>",
"<|assistant|>",
"<|user|>"
]
for tag in tags_to_remove:
display_response = display_response.replace(tag, "")
# Clean up any extra whitespace
display_response = "\n".join(line.strip() for line in display_response.split("\n"))
display_response = "\n".join(filter(None, display_response.split("\n")))
return display_response.strip()
def add_exchange(self, user_message, assistant_response):
"""Store raw response in model history"""
print("\n=== New Exchange ===")
print(f"User: {user_message[:100]}{'...' if len(user_message) > 100 else ''}")
print(f"Assistant (raw): {assistant_response[:100]}{'...' if len(assistant_response) > 100 else ''}")
self.model_messages.append({
"role": "user",
"content": user_message
})
self.model_messages.append({
"role": "assistant",
"content": assistant_response
})
print(f"Current history length: {len(self.model_messages)} messages")
def get_conversation_messages(self):
"""Get full conversation history for model"""
return self.model_messages
# Initialize globals
conversation_manager = ConversationManager()
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto"
)
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.2,
max_new_tokens: int = 4096,
top_p: float = 1.0,
top_k: int = 1,
penalty: float = 1.1,
):
print(f"\n=== New Chat Request ===")
print(f"Message: {message}")
print(f"History length: {len(history)}")
# Build conversation history from model's stored messages
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
# Add all previous messages
conversation.extend(conversation_manager.get_conversation_messages())
# Add new message
conversation.append({"role": "user", "content": message})
print(f"Sending {len(conversation)} messages to model")
# Prepare model input
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
timeout=60.0,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
eos_token_id=[end_of_sentence],
streamer=streamer,
)
# Storage for building complete response
buffer = ""
model_response = ""
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
for new_text in streamer:
buffer += new_text
model_response += new_text
# Convert current buffer for display
display_text = conversation_manager.format_for_display(buffer)
if not thread.is_alive():
print("Generation complete")
# Store final response in model history
conversation_manager.add_exchange(message, model_response)
yield display_text
# Set up Gradio interface
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 { text-align: center; }
"""
chatbot = gr.Chatbot(
height=600,
placeholder="""
<center>
<p>Hi! How can I help you today?</p>
</center>
"""
)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML("""<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>""")
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_classes="duplicate-button"
)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion("⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(value="", label="System Prompt", render=False),
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Temperature", render=False),
gr.Slider(minimum=128, maximum=8192, step=1, value=4096, label="Max new tokens", render=False),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False),
gr.Slider(minimum=1, maximum=50, step=1, value=1, label="top_k", render=False),
gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.1, label="Repetition penalty", render=False),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |