File size: 7,384 Bytes
cc5b602
6f619d7
ae90620
6386510
1898bf7
652620b
1898bf7
6386510
51a7d9e
a1a5283
e6367a7
2fb89d3
 
1898bf7
f663ac7
1898bf7
 
 
f663ac7
1898bf7
 
 
 
 
f663ac7
1898bf7
 
 
 
 
 
 
 
f663ac7
1898bf7
 
 
 
 
 
 
 
 
 
f663ac7
 
1898bf7
 
f663ac7
1898bf7
 
 
f663ac7
1898bf7
f663ac7
 
1898bf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb89d3
1898bf7
2fb89d3
1898bf7
2fb89d3
f663ac7
 
 
 
 
 
 
 
0486bff
4ed884e
2fb89d3
d95f796
2fb89d3
 
 
 
 
68759b3
4ed884e
1898bf7
 
 
f663ac7
1898bf7
3bce535
f663ac7
 
 
1898bf7
 
f663ac7
1898bf7
652620b
f663ac7
1898bf7
f779be9
1898bf7
2fb89d3
f663ac7
 
 
2fb89d3
f663ac7
2fb89d3
f663ac7
 
 
 
2fb89d3
f663ac7
652620b
2fb89d3
3bce535
 
 
 
 
c02dde9
6f28fd6
652620b
 
f663ac7
1898bf7
2fb89d3
1898bf7
f663ac7
bacf4cd
 
 
f663ac7
2fb89d3
 
1898bf7
f663ac7
1898bf7
 
f663ac7
1898bf7
 
 
 
f663ac7
1898bf7
 
 
 
 
 
 
 
 
 
 
 
436bf67
1898bf7
 
 
 
 
 
 
 
f80f6ce
f663ac7
1898bf7
f663ac7
 
 
 
d95f796
51a7d9e
 
 
1898bf7
51a7d9e
1898bf7
 
 
 
 
 
51a7d9e
 
 
559ab3f
51a7d9e
 
 
 
 
 
559ab3f
82baec6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import gradio as gr

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "AGI-0/Art-v0-3B"

class ConversationManager:
    def __init__(self):
        self.model_messages = []  # Stores raw responses with tags
        
    def format_for_display(self, raw_response):
        """Convert model response to user-friendly markdown.
        Keeps original response intact for model."""
        
        # No response? Return empty
        if not raw_response:
            return ""
            
        display_response = raw_response
        
        # Handle reasoning sections
        while "<|start_reasoning|>" in display_response and "<|end_reasoning|>" in display_response:
            start = display_response.find("<|start_reasoning|>")
            end = display_response.find("<|end_reasoning|>") + len("<|end_reasoning|>")
            
            # Extract reasoning content
            reasoning_block = display_response[start:end]
            reasoning_content = reasoning_block.replace("<|start_reasoning|>", "").replace("<|end_reasoning|>", "")
            
            # Replace with markdown details/summary
            markdown_block = f"\n<details><summary>View Reasoning</summary>\n\n{reasoning_content}\n\n</details>\n"
            display_response = display_response[:start] + markdown_block + display_response[end:]
        
        # Clean up other tags
        tags_to_remove = [
            "<|im_start|>",
            "<|im_end|>",
            "<|assistant|>",
            "<|user|>"
        ]
        
        for tag in tags_to_remove:
            display_response = display_response.replace(tag, "")
        
        # Clean up any extra whitespace
        display_response = "\n".join(line.strip() for line in display_response.split("\n"))
        display_response = "\n".join(filter(None, display_response.split("\n")))
        
        return display_response.strip()
    
    def add_exchange(self, user_message, assistant_response):
        """Store raw response in model history"""
        print("\n=== New Exchange ===")
        print(f"User: {user_message[:100]}{'...' if len(user_message) > 100 else ''}")
        print(f"Assistant (raw): {assistant_response[:100]}{'...' if len(assistant_response) > 100 else ''}")
        
        self.model_messages.append({
            "role": "user",
            "content": user_message
        })
        self.model_messages.append({
            "role": "assistant",
            "content": assistant_response
        })
        
        print(f"Current history length: {len(self.model_messages)} messages")
    
    def get_conversation_messages(self):
        """Get full conversation history for model"""
        return self.model_messages

# Initialize globals
conversation_manager = ConversationManager()
device = "cuda"

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")

@spaces.GPU()
def stream_chat(
    message: str,
    history: list,
    system_prompt: str,
    temperature: float = 0.2,
    max_new_tokens: int = 4096,
    top_p: float = 1.0,
    top_k: int = 1,
    penalty: float = 1.1,
):
    print(f"\n=== New Chat Request ===")
    print(f"Message: {message}")
    print(f"History length: {len(history)}")
    
    # Build conversation history from model's stored messages
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    
    # Add all previous messages
    conversation.extend(conversation_manager.get_conversation_messages())
    
    # Add new message
    conversation.append({"role": "user", "content": message})
    
    print(f"Sending {len(conversation)} messages to model")
    
    # Prepare model input
    input_ids = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)
    
    streamer = TextIteratorStreamer(
        tokenizer,
        timeout=60.0,
        skip_prompt=True,
        skip_special_tokens=True
    )
    
    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=penalty,
        eos_token_id=[end_of_sentence],
        streamer=streamer,
    )
    
    # Storage for building complete response
    buffer = ""
    model_response = ""
    
    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
        for new_text in streamer:
            buffer += new_text
            model_response += new_text
            
            # Convert current buffer for display
            display_text = conversation_manager.format_for_display(buffer)
            
            if not thread.is_alive():
                print("Generation complete")
                # Store final response in model history
                conversation_manager.add_exchange(message, model_response)
            
            yield display_text

# Set up Gradio interface
CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 { text-align: center; }
"""

chatbot = gr.Chatbot(
    height=600,
    placeholder="""
    <center>
    <p>Hi! How can I help you today?</p>
    </center>
    """
)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML("""<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>""")
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_classes="duplicate-button"
    )
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion("⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Textbox(value="", label="System Prompt", render=False),
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Temperature", render=False),
            gr.Slider(minimum=128, maximum=8192, step=1, value=4096, label="Max new tokens", render=False),
            gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False),
            gr.Slider(minimum=1, maximum=50, step=1, value=1, label="top_k", render=False),
            gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.1, label="Repetition penalty", render=False),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()